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Abstract

This paper introduces the analysis of factor models in the frequency domain to the corporate

bond pricing literature, using the spectral factor model developed by Bandi, Chaudhuri,

Lo and Tamoni (2021). We decompose the bond market factor into orthogonal frequency-

specific components, where the spectral betas capture frequency-specific systematic risk. Our

findings show that an annual cycle component of the bond market factor—spanning 8 to

16 months—enhances the bond CAPM. In earlier literature, a liquidity risk factor adds

incremental cross-sectional pricing power beyond the bond market factor. We show that

when the bond market factor is substituted by its annual cycle component, the liquidity risk

factor loses its incremental pricing power. Supported by additional evidence, we conclude

that the annual cycle component can be interpreted as the liquidity cycle of the bond market

factor. Moreover, the results indicate that dimensionality reduction in factor models can be

achieved by separating signal from noise in the frequency domain.
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1 INTRODUCTION

1 Introduction

In 2022, the market value of global fixed income outstanding reached 129.8 trillion USD, while

the global equity market capitalisation was 101.2 trillion USD (SIFMA, 2023). Firms issued

1.4 trillion USD in corporate bonds in 2022, whereas equity issuances amounted to 99.4 billion

USD. Despite the vast size of the corporate bond market, the literature on asset pricing has

traditionally paid more attention to equities than corporate bonds (Kelly, Palhares & Pruitt,

2023). Recently, however, there has been a growing interest in identifying corporate bond risk

factors.∗ We contribute to this literature by introducing analysis in the frequency domain to

corporate bond pricing. Specifically, we examine whether, and if so which, frequency-specific

risk factors can explain the cross-sectional variation in expected returns on corporate bond

portfolios.

Using factor models, systematic risk—or beta, in finance jargon—is usually estimated with

monthly (excess) asset returns. For example, in the capital asset pricing model (CAPM) of

Sharpe (1964) and Lintner (1975), the beta of an asset is estimated by regressing its monthly

excess returns on the excess market returns. However, aside from the assumption that in-

vestors maximise single-period utility, the CAPM does not impose restrictions that prevent its

estimation using yearly, quarterly, or daily returns (Bandi & Tamoni, 2022). It is well docu-

mented, though, that the estimated betas differ across these estimation horizons (e.g., Levhari

& Levy, 1977). While previous literature attributed these horizon-specific betas to statistical

biases, such as serial cross-correlation in returns caused by trading frictions (Scholes & Wil-

liams, 1977), more recent literature views it as capturing frequency-specific risk, and thus an

economic phenomenon (Bandi & Tamoni, 2022). Specifically, investors with different investment

horizons may encounter varying levels of systematic risk. This variation can be explained by

the delayed adjustment of asset returns to new information about risk factors (Kamara, Kora-

jczyk, Lou & Sadka, 2016). Therefore, especially in the over-the-counter corporate bond market,

where illiquidity and high trading costs lead to infrequent trading, systematic risk is likely to

be frequency-dependent, and horizon-specific asset pricing effects are expected to be observed.

While traditional factor models, such as the CAPM, do not impose restrictions on the horizon

over which returns should be measured, recent literature has shown that these models implicitly

restrict systematic risk to be constant across frequencies (Bandi et al., 2021). Therefore, in this

paper, we use the spectral factor model introduced by Bandi et al. (2021), which is designed to

capture frequency-dependent systematic risk explicitly. This approach may lead to economically

motivated dimensionality reduction in factor models. For example, from an economic perspect-

ive, it makes sense that the CAPM betas price the cross-section of expected equity returns

(Bandi & Tamoni, 2022). However, literature has shown that the CAPM does not perform well

in empirical applications. Bandi et al. (2021) find that a spectral CAPM—which includes only a

business cycle component of the stock market factor—can explain the cross-section of expected

equity returns.

In this paper, we investigate whether the spectral factor model, as introduced by Bandi et

∗See, for instance, Bai, Bali and Wen (2019); Kelly et al. (2023); Dickerson, Mueller and Robotti (2023);
Dickerson, Julliard and Mueller (2023); Dick-Nielsen, Feldhütter, Pedersen and Stolborg (2023); van Binsbergen,
Nozawa and Schwert (2023); Elkamhi, Jo and Nozawa (2024) and Dickerson and Nozawa (2024)
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1 INTRODUCTION

al. (2021), can be used to achieve dimensionality reduction in the corporate bond factor space.

Specifically, we decompose the bond market factor (MKTB) into frequency-specific components,

which are then used in a linear factor model. The resulting spectral bond CAPM (CAPMB) is

evaluated against traded- and nontraded-factor models proposed in the recent corporate bond

pricing literature. Furthermore, we identify the frequency-specific component of MKTB that

contains the strongest pricing signal and examine its potential to crowd out other risk factors

in multifactor models. This investigation is relevant for several reasons. First, previous findings

suggest that the CAPMB is a strong factor model, outperforming other (multi)factor models

(Dickerson, Mueller & Robotti, 2023). Therefore, the decomposition of MKTB into frequency-

specific components may provide valuable insights into the cross-sectional determinants of cor-

porate bond returns.† Moreover, recent literature shows that only a liquidity-risk factor adds

incremental cross-sectional pricing power beyond MKTB (Dickerson, Mueller & Robotti, 2023).

Therefore, it is interesting to investigate whether a frequency-specific component of MKTB can

crowd out liquidity risk.

The spectral factor model is based on the observation that any covariance-stationary time

series—to which, thus, the Wold (1938) representation applies—can be decomposed in an infin-

ite sum of orthogonal frequency-specific components (Ortu, Severino, Tamoni & Tebaldi, 2020).

Using this extended Wold decomposition on risk factors, we obtain orthogonal components that

capture fluctuations of the original risk factors and which are associated with a specific period-

icity. These frequency-specific components of the risk factor are termed spectral factors. When

the spectral factors are used in a linear factor model, we obtain spectral betas that capture

systematic risk associated with cycles of different lengths. Moreover, it can be shown that the

beta of a traditional factor model is a weighted average of the spectral betas (Bandi et al.,

2021). Therefore, traditional factor models assume that the spectral betas are constant across

frequencies, and thus also systematic risk. In the spectral factor model, however, systematic risk

is allowed to vary with frequency. Besides that, unlike other common methods in macro-finance

for extracting frequency-specific components, such as multiresolution (wavelet) filters, the ex-

tended Wold decomposition is particularly suitable for our asset-pricing context. Specifically,

because of the orthogonality of the spectral factors, the spectral betas can immediately be used

in the second pass regression to determine the incremental cross-sectional explanatory power

of the spectral factors (Cochrane, 2009; Kan, Robotti & Shanken, 2013). This is because the

multiple regression betas are equivalent to the simple regression betas.

Additionally, we employ identification- and misspecification-robust regression techniques.

This is important in the context of corporate bond pricing since recent studies have addressed

a credibility and replication crisis, attributed to unreliable data sources and the absence of

a standardised framework for evaluating factor models (Dick-Nielsen et al., 2023; Dickerson,

Mueller & Robotti, 2023). Therefore, we adopt the model-misspecification-robust standard

errors proposed by Kan et al. (2013) and present the prices of covariance risk estimated using

both ordinary least squares (OLS) and generalised least squares (GLS) regression techniques,

†This reason is explicitly mentioned by Dickerson, Mueller and Robotti (2023) to motivate the decomposition
of corporate bond risk factors into frequency-specific components as an interesting area for future research. This
underscores the significance of our work from an academic perspective. Since, up to our knowledge, we are the
first to analyse corporate bond pricing in the frequency domain.
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following Lewellen, Nagel and Shanken (2010).

We collect intraday transaction data for corporate bonds from the Trade Reporting and Com-

pliance Engine (TRACE) database. Following the framework outlined by Dickerson, Mueller

and Robotti (2023), this data is further cleaned with bond characteristic data collected from

the Fixed Income Securities Database (FISD). Ultimately, the intraday returns are aggregated

to a monthly time series. Moreover, the factor models are evaluated on a diverse set of test

portfolios. We consider a set of 32 portfolios that are constructed by sorting bonds on industry

classification, credit spread and rating.

Our main finding is that an annual cycle component of the bond market factor—capturing

fluctuations between 8 and 16 months—contains the most signal for explaining the cross-section

of expected corporate bond returns. The resulting spectral CAPMB, containing this annual cycle

component of the bond market factor, obtains a higher cross-sectional R2 than the bond CAPM

itself. Furthermore, we also compare the spectral CAPMB with other popular (multi)factor

models, such as the intermediary asset pricing model of He, Kelly and Manela (2017), following

the framework proposed by Dickerson, Mueller and Robotti (2023).

Moreover, we show that the spectral factors lead to dimensionality reduction in corporate

bond factor models. For instance, in the four-factor model of Bai et al. (2019)—consisting of

the bond market factor and a default, liquidity and credit risk factor—we show that only the

liquidity risk factor has incremental cross-sectional pricing power, which has previously been

documented by Dickerson, Mueller and Robotti (2023). Interestingly, when the bond market

factor is substituted by its annual cycle component, the liquidity risk factor in this four-factor

model loses its incremental explanatory power. This finding indicates that the annual cycle

component captures (at least some of) the information contained in the liquidity risk factor.

Therefore, this annual cycle component can be interpreted as the liquidity cycle of the bond

market factor. Furthermore, consistent with previous literature, we show that liquidity risk is

priced over the short term (Kamara et al., 2016).

The remainder of this paper is structured as follows. In Section 2, we discuss related literat-

ure. In Section 3, we introduce the spectral factor model of Bandi et al. (2021) and discuss the

identification of the spectral components. Then, in Section 4, we describe the data. In Section 5

we present the results and evaluate the performance of the spectral factor model in pricing the

cross-section of expected corporate bond returns. Finally, we conclude this paper in Section 6.

2 Literature review

This paper contributes to the literature that uses spectral analysis to study economic processes

in the frequency domain. A prominent example is the work of Nobel laureate Friedman (1957),

who, by decomposing income into a transitory and permanent component, concludes that con-

sumption is influenced by permanent income shocks rather than by changes in transitory income.

Similarly, Engle (1978) finds that output prices are more elastic with respect to wages at lower

frequencies compared to higher frequencies. These studies, among many others in macroeconom-

ics, use spectrum regression to analyse the dependence of economic variables in the frequency
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domain.‡ In spectrum regressions, the dependent and independent variables are first Fourier-

transformed before being used in regression models (Hannan, 1963b, 1963a; Bandi & Tamoni,

2022).

While the literature mentioned above is mainly concerned with frequency-specific relation-

ships in the macro-economy, the finance literature has also applied spectrum regressions. For

instance, Chaudhuri and Lo (2018) use the Fourier-transform to separate and evaluate the

static and dynamic components of an investment portfolio’s performance, where the resulting

dynamic alpha measures the portfolio manager’s ability across different time horizons. Addi-

tionally, Chaudhuri and Lo (2015) use spectral analysis to study the volatility and correlation

between individual stock returns across different frequencies.

Instead, this paper contributes to the finance literature that documents the variation in betas

and risk premia across frequencies. A common approach to estimating the capital asset pricing

model (CAPM) is by using monthly excess asset returns and monthly excess market returns.

However, the CAPM, as introduced by Sharpe (1964) and Lintner (1975), does not specify the

time horizon for estimation. Rather it only assumes that investors maximise single-period utility

(Levhari & Levy, 1977; Bandi & Tamoni, 2022). Therefore, market betas can be estimated using

returns measured over any reasonable horizon, whether daily, weekly or monthly. Nevertheless,

literature has shown that the estimates of systematic risk (i.e., betas) and the corresponding

risk premia differ across these horizons. This literature can be categorised into four streams,

which are discussed next (Bandi et al., 2021).

The first stream of literature employs spectral analysis, as discussed above. For example,

Goldberg and Vora (1978) use spectral analysis to study the frequency-specific relationship

between returns on public utility firms and the market. They conclude that the CAPM betas

vary across cycles of different durations. Dew-Becker and Giglio (2016) use a frequency-based

decomposition of the stochastic discount factor (SDF) to extract frequency-specific prices of risk,

demonstrating that long-run risk cycles are priced significantly in the economy. Furthermore,

Neuhierl and Varneskov (2021) developed a model-free framework to decompose the SDF into

permanent and transitory components, revealing the presence of both low- and high-frequency

priced risk factors.

However, a more common approach to study frequency-specific betas has been aggregation—

the accumulation of excess asset returns and risk factors over a specific horizon (Bandi & Tamoni,

2022). For example, Levhari and Levy (1977) show that the betas of the stock market factor

in the CAPM are affected by the investment horizon (i.e., the horizon over which returns are

measured). Moreover, Hawawini (1983) finds that the market betas of small firms decrease

as the investment horizon shortens, whereas those of big firms increase. This is a problem,

since it may falsely indicate that small firms are less riskier when shorter return intervals are

used for estimation. Additionally, Schwartz and Whitcomb (1977) document a decline in the

cross-sectional R2 of the CAPM when shorter intervals are used to calculate returns.

The third stream of literature shows that the betas are sensitive to the rebalancing frequency

of the test portfolios (Handa, Kothari & Wasley, 1989; Kothari, Shanken & Sloan, 1995). For

instance, Cohen, Polk and Vuolteenaho (2009) find that the CAPM betas of low book-to-market

‡See Bandi and Tamoni (2022, Section 2.1) for an extensive review.
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(growth) portfolios are higher immediately after the sort, compared to the betas of high book-

to-market (value) portfolios. However, over the long run—such as 10 to 15 years after the

sorting—the CAPM betas of growth portfolios are lower than those of value portfolios.

The fourth stream uses multiresolution analysis—specifically, wavelet filters—to study the

dependence of betas over frequencies. For example, Gençay, Selçuk and Whitcher (2003) decom-

pose the market factor and excess asset returns using wavelet filters to derive frequency-specific

betas. They conclude that the CAPM performs more accurately over the medium- to long-

run. Similarly, Kang, In and Kim (2017) use wavelet filters to obtain betas in the time-scale

domain, and conclude that a business-cycle component of the Fama and French (1993) three-

factor model enhances the cross-sectional pricing accuracy of the model itself. Furthermore,

Ortu, Tamoni and Tebaldi (2013) use the Haar filter to decompose consumption growth into

frequency-specific components, and conclude that a low-frequency component commands a 2%

premium per annum.

In this paper, the frequency decomposition is related to this last approach, multiresolution

analysis. We use the extended Wold representation introduced by Bandi, Perron, Tamoni and

Tebaldi (2019) and Ortu et al. (2020). This approach applies the Haar filter to the shocks of the

Wold (1938) representation rather than the process itself. Therefore, while multiresolution filters

are non-parametric, the extended Wold representation defines a data generating process, which

is parametric and thus needs to be identified. Since the extended Wold representation provides

an explicit relationship between a model in the time domain and a model in the time-scale

domain, it has two advantages over multiresolution analysis (Bandi & Tamoni, 2022). First,

it enhances economic interpretability. For instance, in Appendix D, we derive the relationship

between spectral betas in the time-scale domain and delayed price adjustment to risk factors in

the time domain. Second, it facilitates the use of more robust inferential techniques, which are

often developed for time series (i.e., in the time domain).

Bandi et al. (2021) also use the extended Wold representation to introduce the spectral factor

model, where the excess asset returns and risk factors are decomposed into frequency-specific

components. The resulting factor loadings are called spectral betas. Bandi et al. (2021) show

that the aggregate beta in the traditional factor model is a weighted average of the spectral

betas. This implies that the traditional factor model assumes equal spectral betas across fre-

quencies, and is, therefore, unable to capture frequency-specific risk. Moreover, Bandi et al.

(2021) find that the spectral CAPM—consisting of only the frequency-specific component of the

excess market return that captures cycles between 32 and 64 months (i.e., the business cycle

component)—improves the cross-sectional pricing accuracy of the CAPM substantially. This

paper contributes to Bandi et al. (2021), and related literature, by revisiting their results with

a replication study and extending their spectral factor model to the corporate bond market.

The literature reviewed above primarily focuses on the US equity market, with limited re-

search exploring the role of frequency in other asset classes. Therefore, this paper contrib-

utes significantly to existing literature by examining frequency-specific systematic risk and risk

premia for corporate bonds. Only recently, literature has touched upon the role of frequency in

the corporate bond market. For instance, Elkamhi et al. (2024) find that a single-factor model—

with long-run consumption risk as a common factor—explains the expected excess returns on
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a diverse set of corporate bond portfolios. This long-run consumption risk factor is measured

by accumulating the consumption growth of wealthy households over the past 24 quarters. We

deviate from Elkamhi et al. (2024) by employing the extended Wold representation introduced

by Ortu et al. (2020) to construct frequency-specific factors, instead of using aggregation. This

distinction is crucial to highlight. Namely, Bandi and Tamoni (2023) formalise the link between

aggregation and the frequency-specific components from the extended Wold decomposition, and

conclude that the former can be seen as a noisy proxy for the latter. Empirically, they show that

a business cycle component of consumption growth, spanning a period between 4 and 8 years,

yields equivalent cross-sectional pricing performance in the equity market as accumulating the

growth rates over a 4-year horizon.

Moreover, this paper is motivated by the research on corporate bonds conducted by Dickerson,

Mueller and Robotti (2023). They find that popular bond factor models proposed in earlier lit-

erature do not outperform the bond CAPM. For example, Bai et al. (2019) demonstrate that

three novel factors—credit, liquidity, and downside risk—add incremental explanatory power

beyond the bond market factor. However, Dickerson, Mueller and Robotti (2023) reveal that

the four-factor model of Bai et al. (2019) (consisting of these three novel factors and the bond

market factor) is not properly constructed since it consists of lead-lag errors. The main object-

ive of Dickerson, Mueller and Robotti (2023) is to underscore the importance of transparent

data collection and cleaning procedures. This is particularly critical in the context of corporate

bond pricing, which involves over-the-counter transactions and lacks error-free databases, unlike

equity markets. This paper follows the data collection and cleaning procedures of Dickerson,

Mueller and Robotti (2023).

Therefore, this paper contributes to the recent literature that (re-)evaluates the proposed

factor model for corporate bonds. First, this literature focuses on how reliable datasets of

corporate bond returns could be constructed (Andreani, Palhares & Richardson, 2023; Dickerson,

Mueller & Robotti, 2023). For instance, Dick-Nielsen et al. (2023) propose a novel framework to

clean corporate bond data and show that most risk factors suggested in previous literature cannot

be replicated using this refined dataset. Second, this literature studies the role of transaction

costs in the over-the-counter corporate bond market (Ivashchenko & Kosowski, 2023).

Finally, this paper contributes to the existing literature that tries to bring order to the

factor zoo, which refers to the overwhelming number of risk factors that have been proposed in

literature, both for equity and corporate bond pricing models. For instance, Dickerson, Julliard

and Mueller (2023) use a hierarchical Bayesian method to analyse 563 trillion possible corporate

bond factor models. They conclude, however, that most risk factors are not priced, and only one

factor is shown to be in the SDF with a high probability. Using a similar technique for equity

pricing, Bryzgalova, Huang and Julliard (2023) study 2 quadrillion possible factor models. They

conclude that only 23 to 25 risk factors are included in the SDF with high probability. This

discussion illustrates a general problem in the asset pricing literature. A potential solution might

be a decomposition of risk factors across frequencies. First, it could uncover potential hidden

sources of risk, captured by the spectral betas, as well as their economic determinants (Bandi &

Tamoni, 2022). In addition, from a methodological perspective, the spectral betas can be seen

as the result of extracting signal from the noisy aggregate beta estimate (i.e., the beta of the
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3 METHODOLOGY

traditional factor model).

3 Methodology

In this section, we introduce the spectral factor model proposed by Bandi et al. (2021). First,

we provide the intuition behind the frequency-based decomposition of a factor model in Section

3.1. Next, we formalise the construction of the frequency-specific components from the extended

Wold representation in Section 3.2. Finally, we discuss the identification of the extended Wold

representation for empirical applications in Section 3.3.

3.1 Spectral factor model: Intuition

In this paper, we define the traditional linear factor model by

yt = α+ βxt + ut, (1)

where yt represents the excess asset return and xt is the risk factor, both observed at time t.

Furthermore, ut is an error term. The spectral factor model generalises this traditional model

by decomposing yt and xt into frequency-specific components that capture cycles of different

lengths. In this way, systematic risk—captured by the frequency-specific betas—is allowed to

vary over frequency.

To illustrate this spectral decomposition, let us consider the spectral factor model in a

simplified context. Specifically, we assume that the risk factor (xt) and the excess asset return

(yt) can be decomposed into two frequency-specific components, each capturing cycles with a

length larger than 2j periods (e.g., months) and smaller than 2j periods, respectively. This

means that yt = y<2j

t + y>2j

t and xt = x<2j

t + x>2j

t , where the superscripts indicate the cycle

length of the components in number of periods. In Section 3.2, we generalise this decomposition

to more than two frequency-specific components, where the frequency-specific component at

scale j captures cycles between 2j−1 and 2j periods. Furthermore, the dyadic nature of the

cycles is inherent to the spectral decomposition.

Another convenient feature of the decomposition is the orthogonality of the frequency-specific

components of xt and yt, which is formalised by the following two expressions

C
[
y<2j

t , y>2j

t

]
= 0 = C

[
x<2j

t , x>2j

t

]
, (2)

C
[
y<2j

t , x>2j

t

]
= 0 = C

[
x<2j

t , y>2j

t

]
. (3)

These equations imply that the spectral components are orthogonal both within and across

series. This feature is useful, especially in the context of cross-sectional asset pricing. Following

the discussion of Cochrane (2009) and Kan et al. (2013), the statistical significance of the prices

of multivariate beta risk (i.e., gammas) can only be used to determine whether a factor is priced.

However, to determine whether a (correlated) risk factor adds incremental cross-sectional pricing

power in a multifactor model, we should use the statistical significance on the prices of covariance

risk, or the prices of univariate beta risk (i.e., lambdas). However, since our spectral factors are
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orthogonal—within and across processes—the univariate betas coincide with the multivariate

betas.

Having constructed the orthogonal frequency-specific components of the excess asset return

and the risk factor, we define the spectral factor model as

yt = α+ βHFxHF
t + βLFxLFt + ut, (4)

where, for ease of interpretation and notation, xHF
t = x<2j

t and xLFt = x>2j

t are the high-

frequency (HF) and low-frequency (LF) spectral component, respectively. The corresponding

spectral betas are denoted by βHF and βLF. Using the expression in Eq. (2), we define these

spectral betas by

βHF =
C
[
yt, x

HF
t

]
V
[
xHF
t

] , (5)

βLF =
C
[
yt, x

LF
t

]
V
[
xLFt

] . (6)

Moreover, due to the orthogonality of the frequency-specific components across processes, as

implied by Eq. (3), the expression in Eqs. (5) and (6) can be reformulated as

βHF =
C
[
yHF
t , xHF

t

]
V
[
xHF
t

] , (7)

βLF =
C
[
yLFt , xLFt

]
V
[
xLFt

] , (8)

where yHF
t and yLFt are the low- and high-frequency spectral components of the excess asset

return, respectively. The spectral betas in Eqs. (7) and (8) are identified by the following two

linear regression equations,

yHF
t = α+ βHFxHF

t + ut and yLFt = α+ βLFxLFt + ut.

It is important to emphasise that the spectral factor model defined in Eq. (4) allows system-

atic risk to vary over frequencies, while the traditional factor model defined in Eq. (1) implicitly

assumes that the spectral betas are constant over the scales j. This observation becomes expli-

cit when we rewrite the aggregate beta in Eq. (1) as a weighted average of the spectral betas

defined in Eqs. (7) and (8) as follows

β =
C [yt, xt]

V [xt]
,

=
C
[
yHF
t + yLFt , xHF

t + xLFt
]

V [xt]
,

=
C
[
yHF
t , xHF

t

]
V [xt]

+
C
[
yLFt , xLFt

]
V [xt]

,
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=
V
[
xHF
t

]
V [xt]

C
[
yHF
t , xHF

t

]
V
[
xHF
t

] +
V
[
xLFt

]
V [xt]

C
[
yLFt , xLFt

]
V
[
xLFt

] ,

= vHFβHF + vLFβLF, (9)

where vj = V[xjt ]/V[xt] is the relative variance weight for component j ∈ {HF,LF}. Further-

more, we used Eqs. (2) and (3) to separate the covariance term in the second line above.

Following Eq. (9), we may conclude that the traditional beta (β) is a weighted average of the

spectral betas, since vHF + vLF = 1. Moreover, it is clear that the traditional factor model

imposes the spectral betas to be equal to each other, βHF = βLF = β. Thus, it is misspecified

when systematic risk is frequency-dependent, such that βHF ̸= βLF. In many economic applic-

ations, the high-frequency component of xt is likely much more volatile than the low-frequency

component, which results in vHF > vLF. This implies that the high-frequency component will

be weighted more heavily in the aggregate beta (see Eq. (9)), while the low-frequency spectral

beta (βLF) might contain an important signal for asset pricing. Therefore, the main objective

of the spectral factor model is to decompose systematic risk into frequency-specific components,

such that potential signal can be separated from noise.

3.2 Extended Wold representation

In this section, the construction of the orthogonal frequency-specific components of the excess

asset return (yt), and risk factor (xt), is formalised. These processes are decomposed using the

extended Wold representation for covariance-stationary time series introduced by Ortu et al.

(2020) and Bandi et al. (2019). We continue the discussion with the bivariate process used in

the previous section, x = {(yt, xt)}t∈Z. This is without loss of generality since the discussion

below can easily be extended to a multivariate process (see e.g., Bandi & Tamoni, 2022).

First, it is important to emphasise that the decomposition relies on the covariance-stationary

property of the process x. Specifically, a covariance-stationary process can always be presented

in white noise shocks, or in other words, in its Wold representation (Wold, 1938). To formalise

this, let us define a white noise process ε = {(ε1t , ε2t )}t∈Z, with zero mean, E[ε] = 0, and

covariance matrix given by Σε = E[εε⊺]. Then, the Wold representation of x is given by(
yt

xt

)
=

∞∑
k=0

(
α1
k α2

k

α3
k α4

k

)(
ε1t−k

ε2t−k

)
=

∞∑
k=0

αkεt−k, (10)

where α0 is a 2× 2 identity matrix, I2. Moreover, note that the expression in Eq. (10) assumes

that x has a zero mean. However, this assumption can be relaxed by adding a constant term to

the Wold representation.

Next, the Wold representation in Eq. (10) is reformulated to the extended Wold represent-

ation. For this, the discrete Haar transform (DHT; Haar, 1911) is used to aggregate the Wold

coefficients and residuals, which results in the following two expressions.

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 , (11)
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Ψ
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 . (12)

Then, the extended Wold representation of x is defined as(
yt

xt

)
=

∞∑
j=1

∞∑
k=0

Ψ
(j)
k ε

(j)

t−k2j
=

∞∑
j=1

x
(j)
t , (13)

where x
(j)
t is the frequency-specific component of x corresponding to the jth scale. Ortu et al.

(2020) shows that these spectral components are orthogonal across scales j.

Moreover, it can be shown that the shocks associated with x
(j)
t are white noise over the

support S
(j)
t = {t−k2j : k ∈ Z}. This means that x

(j)
t itself has a Wold representation, given by∑∞

k=0Ψ
(j)
k ε

(j)

t−k2j
, over the support S

(j)
t . For this reason, the spectral component of xt at scale j

can be interpreted as a frequency-specific factor that captures cycles with a length between 2j−1

and 2j time units (Bandi et al., 2021). Furthermore, since we use monthly data in this paper,

each scale is converted to its corresponding cycle length in months in Table 1.

Table 1
Conversion of frequency-scales to cycle length in months

Scale Time horizon

j = 1 1− 2 months
j = 2 2− 4 months
j = 3 4− 8 months
j = 4 8− 16 months
j = 5 16− 32 months
j = 6 32− 64 months
j > 6 > 64 months

Following the extended Wold representation in Eq. (13), the spectral factor model is defined

as

yt = α+

J∑
j=1

β(j)x
(j)
t + β(J+1)π

(J)
t + ut, (14)

where π
(J)
t = xt −

∑J
j=1 x

(j)
t , the residual component. Note that this residual component is

a convenient way to prevent truncation of the infinite sum in Eq. (13). Also, due to the

orthogonality of the spectral components, it does not affect the spectral beta estimates.

Finally, we formalise the representation of the aggregate beta of a traditional factor model

as a weighted average of spectral betas, as in Eq. (9). More specifically, we state the following

theorem presented in Bandi et al. (2021), for completeness.

Theorem 3.1. Let x = {(yt, xt)}t∈Z be a covariance-stationary process, and the frequency-

specific beta at scale j be given by β(j) =
C
[
y
(j)
t ,x

(j)
t

]
V
[
x
(j)
t

] . Then, the aggregate beta is defined as

β = C[yt,xt]
V[xt]

=
∑∞

j=1 v
(j)β(j) where v(j) =

V
[
x
(j)
t

]
V[xt]

.

Proof. See Appendix B.
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3.3 Identification

The difference between wavelet filters and the extended Wold decomposition is that the former

is a non-parametric method, while the latter defines a data generating process (Bandi & Tamoni,

2022). This means that the extended Wold representation needs to be identified, which is the

subject of this section.

First, we generalise the bivariate process in the previous sections to a multivariate process.

Without loss of generality, let x̃t ∈ Rk−1 contain the common risk factor in the first position, and

state variables in the remaining k−2 positions. Again, yt ∈ R is the excess asset return at month

t. Then, we define the multivariate process by xt = (yt, x̃
⊺
t )

⊺ ∈ Rk, which is covariance stationary

and has a zero mean. The objective is to decompose this multivariate process, x = {(yt, x̃⊺
t )}t∈Z,

into frequency-specific components using the extended Wold representation in Eq. (13).

Since the coefficients (αk) and shocks (εt) of the Wold representation in Eq. (10) are used

as input for the extended Wold representation, we identify first the Wold representation of x.

For this purpose, we assume that x is a VAR(p) process, given by:

xt = A1xt−1 + · · ·+Apxt−p + εt, (15)

where Ai is a k × k coefficient-matrix, with i ∈ {1, . . . , p}. The model in Eq. (15) should be

rewritten to the Wold representation in Eq. (10). Therefore, we make use of the convenient

property that the VAR(p) model can be expressed as a VAR(1), by

Xt = AXt−1 + Ut, (16)

where Xt =
(
x⊺
t ,x

⊺
t−1, . . . ,x

⊺
t−p+1

)⊺
, and A is the companion matrix of the VAR(p) model.

Moreover, since x is assumed to be a covariance-stationary process, Eq. (16) can be formulated

as

Xt =

∞∑
k=0

AkUt−k,

for instance, by applying recursive substitution to Eq. (16). Now, we have identified the Wold

representation as in Eq. (10), where αk = Ak and εt−k = Ut−k.

Next, the Wold coefficients and shocks are used to identify the extended Wold representation

in Eq. (13). Specifically, we identify the shocks, ε
(j)
t , and coefficients, Ψ

(j)
k , with the DHT filters

in Eqs. (11) and (12), respectively. Then following the extended Wold representation in Eq.

(13), the spectral component of xt at scale j is defined as x
(j)
t =

∑∞
k=0Ψ

(j)
k ε

(j)

t−k2j
.

Finally, to obtain a spectral factor that does not depend on the asset return process used

(y) for estimation, we assume that y does not Granger cause x̃. Since the risk factor is the first

element in x̃t, the identification of its coefficients is not influenced by the returns on the test

assets. Furthermore, the VAR(p) model in Eq. (15) is estimated with p = 18 lags. Bandi et

al. (2021) also impose the Granger causality restriction, and use p = 18 lags, in their spectral

factor models.
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4 Data

4.1 Corporate bonds

We construct a dataset of monthly corporate bond data following the procedure outlined by

Dickerson, Mueller and Robotti (2023).§ While Dickerson, Mueller and Robotti (2023) analyse

a sample period from July 2002 to December 2016, we extend their sample period to December

2021. Furthermore, as discussed in Section 2, recent literature has highlighted the inconsistent

methodological choices, lack of error-free datasets, and replication problems in corporate bond

asset pricing research (Dickerson, Mueller & Robotti, 2023; Dick-Nielsen et al., 2023). Therefore,

this section aims to provide a detailed discussion of the data collection and cleaning procedure

used in this paper.

4.1.1 Construction of panel data

The panel dataset of monthly corporate bond returns and characteristics is generated using

two databases. First, we use the Trade Reporting and Compliance Engine (TRACE) database.

TRACE contains intraday data on US corporate bond transactions, such as prices and other

transaction data. After applying the data cleaning procedure discussed below, the intraday

prices are converted to a monthly returns series. Moreover, we use the Mergent Fixed Income

Securities Database (FISD), which contains corporate bond issue data and other characteristics.

The FISD dataset is combined with the TRACE dataset (based on bond CUSIP) such that

corporate bond factors, and characteristic-sorted test portfolios, can be constructed.

Analyzing corporate bond return data comes with challenges. The primary reason is the

opaque nature of the corporate bond market since the transactions take place in the over-the-

counter market. Therefore, before the monthly return series is constructed, the intraday price

data is filtered from unreliable transactions. We apply the same filters as Dickerson, Mueller

and Robotti (2023). For instance, we exclude bonds that are close to default, are not publicly

traded in the US, or are illiquid. An overview of the filters is provided in Table 7 of Appendix

A.

Next, we construct daily corporate bond prices by taking the value-weighted average of the

cleaned intraday prices. The daily corporate bond prices are, in turn, used to obtain the monthly

return series. For each bond, we calculate the return at month t using one of the following two

definitions: (i) the bond return at the month t is the return between the end-of-month prices at

month t − 1 and month t, or (ii) the bond return at month t is defined as the return between

the begin-of-month price and the end-of-month price at month t. These definitions ensure a

corporate bond can have a valid return at month t, even if it is not traded in the over-the-

counter market at the end of month t− 1. They are implemented following Dickerson, Mueller

and Robotti (2023) but are also more commonly used in the corporate bond literature (Dick-

Nielsen, 2014; Dick-Nielsen et al., 2023). Furthermore, the end-of-month t price in the two

definitions above is identified as the price in the last 5 trading days, where preference is given

to the latest trading day available in the dataset. Moreover, the begin-of-month bond price at

month t is identified as the price in the first 5 trading days, where preference is given to the

§Code to construct the dataset can be found on the authors’ website: https://openbondassetpricing.com
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earliest trading day at which the price is observed. Note that this implies that a valid return

at month t cannot be calculated when, both: the bond is not traded in the last 5 working days

of month t or month t− 1, and the bond is not traded in the last five trading days of month t

or the first 5 trading days of month t. Furthermore, definition (i) will always be preferred over

definition (ii) when both options can be used to calculate the monthly return.

Finally, we use the monthly price data to get the monthly bond returns. Let Pi,t be the

trade price of corporate bond i at month t. Moreover, let AIi,t and Ci,t be the accrued interest

and coupon rate of bond i at month t, respectively. Then, the return for this bond at month t

is defined as

ri,t =
Pi,t +AIi,t + Ci,t

Pi,t−1 +AIi,t−1
− 1.

In the cross-sectional pricing applications of this paper, we use excess returns, defined as Ri,t =

ri,t − rf,t, where rf,t is the risk-free rate (i.e., the one-month US Treasury bill rate). All returns

are in percentages.

4.1.2 Traded-factor models

To evaluate the spectral factor model for corporate bonds, we compare its cross-sectional pricing

accuracy with other popular factor models, for which both traded- and nontraded-factor models

are considered. However, the analysis of the spectral factor models compared to nontraded-

factor models is presented in Appendix C.1. In this paper, we focus instead on the traded-factor

models. We consider the same models as Dickerson, Mueller and Robotti (2023), which we

introduce below.

Capital asset pricing model (CAPM). First, we consider the capital asset pricing model of

Sharpe (1964) and Lintner (1975), which is often applied to equities. This single-factor model

uses the value-weighted average excess return on the stock market as a risk factor (MKTS).

The stock market comprises all US common stocks (i.e., with share codes 10 or 11) listed on

the NYSE, AMEX, and NASDAQ. The excess returns are calculated relative to the risk-free

rate, which is defined as the one-month US Treasury bill rate. Both the market factor and the

risk-free rate are collected from Kenneth French’s website (see Appendix A). We motivate the

use of the CAPM in the corporate bond market by the recent trend to identify a common factor

structure across asset classes (Dickerson, Mueller & Robotti, 2023).

Bond CAPM (CAPMB). We consider an equivalent capital asset pricing model for corporate

bonds: the CAPMB. This single-factor model has the bond market factor (MKTB) as a risk

factor, defined as the value-weighted average excess return on the corporate bond market. Also

these returns are calculated in excess of the one-month US Treasury bill rate. We obtain MKTB

using the dataset constructed in Section 4.1.1. Furthermore, we consider the CAPMB as an asset

pricing model in this paper since previous literature has shown its accurate explanatory power,

and we verify these findings on a novel sample period. Besides that, the CAPMB provides a

natural benchmark model for its spectral version.

BBW four-factor model. This is the four-factor model introduced by Bai et al. (2019). It

includes MKTB, a liquidity risk factor (LRF), a downside risk factor (DRF), and a credit risk
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(a) Average excess return
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(b) Spectral bond market covariance at scale j = 4

Figure 1: Panel (a) shows the average excess returns for the 32 test portfolios: (i) the 12 Fama-French
industry portfolios; (ii) 10 portfolios sorted on credit spread; (iii) 5 portfolios sorted on maturity; and
(iv) 5 portfolios sorted on rating. The sample period is from September 2008 to December 2021 (160

months). Panel (b) shows the spectral bond market covariance at scale j = 4 (Ĉ(4)).

factor (CRF). The latter three factors are constructed following a relatively complex procedure,

which is discussed in Appendix A. We emphasise that the BBW risk factors were found to be

inappropriately constructed (Dickerson, Mueller & Robotti, 2023). However, we use the dataset

constructed in Section 4.1.1 to get the four risk factors, which are shown to be clean of lead/lag

errors by Dickerson, Mueller and Robotti (2023).

Intermediary capital models (HKM/HKMSF). This is a two-factor model introduced by He et

al. (2017, HKM). The model includes a factor that captures financial intermediary risk (CPTLT)

and the stock market factor. The CPTLT factor is collected from the authors’ website.¶ We

motivate the use of this factor model by the important role that financial intermediation has

in the—over-the-counter—corporate bond market. Furthermore, He et al. (2017) show that the

HKM factor model can accurately explain the cross-section of expected corporate bond return.

Therefore, this paper also evaluates the single-factor model (HKMSF) that consists of only

CPTLT.

Default and term-structure model (DEFTERM). This is the two-factor model introduced by

Fama and French (1993). The model contains a factor that captures risk caused by changes in

interest rates (TERM), and a factor that proxies the risk of default (DEF). Data on TERM and

DEF is collected from Amit Goyal’s website.‖ TERM is computed as the difference between the

yield on long-term US government bonds and US Treasury bills. Moreover, DEF is defined as

the difference between the long-term corporate bond returns and the long-term US government

bond returns. Data on the long-term government bond yield and the long-term corporate bond

returns are collected from Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook. The Treasury-

bill yield in Amit Goyal’s TERM variable is defined as the 1-Month Treasury Bill: Secondary

Market Rate from the Federal Reserve Economic Data (FRED) database.

¶See https://zhiguohe.net/data-and-empirical-patterns/
‖Welch and Goyal (2008) use DEF and TERM, and Amit Goyal provides updated data on these factors on his

website
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4.1.3 Test assets

In this paper, we use the same test portfolios as Dickerson, Mueller and Robotti (2023), which

include: (i) 12 Fama-French portfolios sorted by industry classification, (ii) 10 portfolios sorted

by credit spread, (iii) 5 portfolios sorted by time-to-maturity, and (iv) 5 portfolios sorted by

rating. Panel (a) of Figure 1 shows the average excess portfolio returns over the sample period,

revealing significant heterogeneity across the characteristic-sorted portfolios. The inclusion of

the Fama-French industry portfolios is motivated by Lewellen et al. (2010). They suggest using

portfolios sorted by industry since these do not have a strong common factor structure. This

reduces the chances of obtaining unreasonably high ordinary least squares (OLS) cross-sectional

R2 values in the second pass regressions, only because the proposed factors are correlated with

this strong common factor structure, but do not make sense from an economic perspective. The

industry portfolios are constructed by sorting corporate bonds based on groups of SIC codes,

which can be extracted from Kenneth French’s website (see Appendix A). Besides that, the

maturity and rating portfolios are created by sorting corporate bond returns into quintiles based

on time-to-maturity and bond rating, respectively. Finally, consistent with Dickerson, Mueller

and Robotti (2023), the credit spread portfolios are constructed by sorting on the average credit

spread between months t− 1 and t− 12. This one-month lag between the average credit spread

measure and portfolio construction period ensures that the potential measurement errors in

bond prices do not result in lead-lag effects in the return series (Elkamhi et al., 2024).

5 Results

5.1 Empirical illustration: The properties of spectral betas

In Section 3 we discussed the theoretical properties imposed by the extended Wold decomposi-

tion, such as the orthogonality of the frequency-specific components. We expect these properties

to hold in an empirical application, and this section focuses on verifying them. We follow the

analysis of Bandi et al. (2021) and estimate the spectral factor model on the corporate bond

market.

We start the analysis by estimating the bond CAPM (CAPMB). We consider the top and

bottom quintile portfolios sorted on credit spread, which are introduced in Section 4.1. We

choose these two test portfolios since they show the most heterogeneity in average excess returns

in Figure 1. Let Rhigh,t and Rlow,t denote the excess return at month t on the high and low

credit-spread portfolios, respectively. Furthermore, let fMKTB,t be the bond market factor at

month t. Then, the estimated CAPMB is given by

Rhigh,t = α+2.475× fMKTB,t + ut R2 = 0.58, (17)

(t-stat = 9.75)

Rlow,t = α+0.314× fMKTB,t + ut R2 = 0.53. (18)

(t-stat = 5.03)
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The CAPMBs presented above are, in turn, used to calculate the model-implied covari-

ances between the bond market factor and the excess portfolio returns. Namely, given that the

annualised volatility on the bond market factor is 6.959, the market covariance for the high

credit-spread portfolio is Ĉ(fMKTB,t, Rhigh,t) = 2.475 × (6.959/
√
12)2 = 9.988. Similarly, the

model-implied covariance between the bond market factor and the low credit-spread portfolio

return is Ĉ(fMKTB,t, Rlow,t) = 0.314× (6.959/
√
12)2 = 1.267.

Table 2
Spectral decomposition for credit-spread-sorted portfolios. The upper panel reports the spectral cov-
ariances associated with six frequency-specific bond market factors and the corresponding frequency-
components of a low and high credit spread portfolio. The lower panel reports the spectral betas and
relative variance weights. The bond market factor and excess portfolio returns are decomposed into
frequency-specific components using the procedure outlined in Section 3. The data are monthly from
September 2008 through December 2021. The returns are in percentages.

Spectral covariances j = 1 j = 2 j = 3 j = 4 j = 5 j > 5
∑6

j=1 Ĉ

High credit spread 2.342 3.753 0.681 2.202 0.542 0.408 9.929
Low credit spread 0.407 0.615 0.051 0.124 0.066 0.011 1.275

Spectral betas and weights j = 1 j = 2 j = 3 j = 4 j = 5 j > 5
∑6

j=1 v̂
(j)β̂(j)

High credit spread 1.821 2.413 2.327 3.553 2.999 3.234 2.459
Weight (rel. variance) 0.319 0.385 0.073 0.154 0.045 0.031

Low credit spread 0.316 0.396 0.175 0.201 0.363 0.090 0.316
Weight (rel. variance) 0.319 0.385 0.073 0.154 0.045 0.031

Since the extended Wold decomposition can be seen as a persistence-based (co)variance de-

composition method, we expect the spectral covariances to sum to the model-implied covariances

presented above. The upper panel of Table 2 reports the spectral covariances, Ĉ(f (j)
MKTB, R

(j)
p ),

where p ∈ {high, low}. We observe that the spectral covariances for the low credit-spread port-

folio sum to 1.275, which is close to the estimate (1.267) provided by the CAPMB in Eq. (18).

The same holds for the high credit-spread portfolio, where the spectral covariances sum to 9.929.

Moreover, the lower panel of Table 2 reports the spectral betas (β(j)) and the relative variance

weights (v(j)). Following Thereom 3.1, we expect the weighted-average of spectral betas to be

equivalent to the aggregate CAPMB betas estimated in Eqs. (17) and (18), where the weights

are given by v(j). Specifically, we expect the following expression to hold

β̂ =

7∑
j=1

v̂(j)β̂(j), where v̂(j) =
V̂
(
f̂
(j)
MKTS

)
V̂
(
f̂MKTS

) .
where v̂(j) and β̂(j) are the relative variance weight and spectral beta at scale j, respectively.

We observe in the lower panel of Table 2 that Theorem 3.1 holds, with the weighted averages of

spectral betas being 2.495 and 0.316 for the high and low credit spread portfolios, respectively.

Finally, we evaluate the orthogonality of the spectral components of MKTB. Specifically,

since the spectral components are orthogonal—both within and across processes—we expect

that the are the same. We obtain the high-frequency components of the portfolio return and

MKTB by summing the spectral components between scale j = 1 and j = 3. The sum of the

three remaining spectral components define the low-frequency components. Then, we estimate
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the following simple regression models

RHF
p,t = α+ βHF

p fHF
MKTB,t + ut,

RLF
p,t = α+ βLF

p fLF
MKTB,t + ut,

and the multiple regression equation

Rp,t = α+ βHF
p fHF

MKTB,t + βLF
p fLF

MKTB,t + ut.

The resulting spectral betas are shown in Table 3. We observe that the spectral betas are very

similar.

Table 3
Orthogonality of frequency-specific components of corporate bond portfolio returns. This table provides
the spectral betas obtained from a simple and multiple linear regression of the high and low credit-spread-
sorted portfolio excess returns on the frequency-specific components of the market excess return. The high
and low credit spread portfolios are defined as the top and bottom decile portfolios obtained from sorting
on credit spread. The portfolio and market (excess) returns are decomposed into six frequency-specific
components (incl. the residual term π(5)) using the procedure outlined in Section 3. The high-frequency
(HF) component is defined as the sum of the components from scales 1 to 3 (included). By summing the
three remaining components, we obtain the low-frequency (LF) component. The data are monthly from
September 2008 to December 2021 (160 months). Newey-West adjusted t-statistics are reported between
parentheses.

Simple regression Multiple regression

βLF βHF βLF βHF

High credit spread 3.407 2.205 3.436 2.204
(10.770) (8.259) (6.127) (7.663)

Low credit spread 0.270 0.341 0.194 0.347
(4.118) (4.723) (1.697) (4.099)

5.2 Cross-sectional pricing: Corporate bonds

In this section, we explore the potential of the spectral factor model for achieving dimensionality

reduction in the corporate bond factor space. We apply the spectral decomposition to the bond

market factor (MKTB). Several reasons support this choice. First, unlike the CAPM in equity

markets, the bond CAPM (CAPMB) is a strong factor model and, therefore, an ideal benchmark

for the spectral factor model (Dickerson, Mueller & Robotti, 2023). Second, since MKTB is

included in many factor models, decomposing it into frequency-specific components may offer

the greatest potential for dimensionality reduction. Lastly, a frequency-based decomposition of

MKTB might reveal valuable insights into its strong performance in the CAPMB.

We estimate the spectral factor models as discussed in Section 3. Given the short period

on which reliable corporate bond data can be collected, we extract J = 5 frequency-specific

components (excl. residual term, π
(5)
t ). However, in Appendix C.2, we show that the main

results are robust to setting J = 6. This means that we are left with a sample period from

September 2008 to December 2021 (160 months).∗∗ The resulting frequency-specific components

∗∗2J + p observations are needed to initialise the spectral components. The lag-length of the VAR model is set
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of the bond market factor are shown in Figure 2. We observe that the components become more

persistent as the scale, j, increases.
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Figure 2: These figures show the spectral bond market factor for each scale j (blue). The frequency-
specific components are estimated as discussed in Section 3, where J is set to 5. Furthermore, we plot
the liquidity risk factor in the four-factor model of Bai et al. (2019) (orange). The sample period is from
September 2008 to December 2021 (160 months). For the conversion of the scales to the cycle-length in
months, see Table 1. The grey shades correspond to NBER recession periods.

Moreover, Figure 1 shows that the average excess returns on the 32 test portfolios align with

the spectral market covariances for scale j = 4 (Ĉ(4)). Converting the scale to cycle length

in months using Table 1, this finding suggests that an annual cycle component—capturing

fluctuations between 8 and 16 months—may be the driving force behind the strong performance

of the bond market factor.

To formally study whether the annual cycle component has indeed more pricing power than

the other spectral components, and to evaluate its cross-sectional pricing accuracy compared to

other factor models, we perform the second-pass regression by estimating the prices of covariance

risk (i.e., lambdas, see Kan et al., 2013).†† We define the spectral CAPMB as a single-factor

model with the spectral bond market factor at scale j = 4 as a risk factor (CAPMB(4)). The

results are presented in Table 6. Besides the prices of covariance risk, the table reports the

generalised method of moments (GMM) t-statistics for correctly specified models (t-statc) which

account for heteroskedasticity and autocorrelation, and the model-misspecification-robust t-

statistics (t-statm) of Kan et al. (2013). Also the cross-sectional R2 values are reported in Table

6, together with p-values for the test under the null hypothesis that R2 = 1 in squared brackets.

to p = 18, following Bandi et al. (2021). But the results are robust to alternative choices around p = 18.
††We should use the prices of covariance risk to determine the incremental pricing power of risk factors (except

for spectral factors, Section 3.1). The prices of multivariate beta risk are presented in Table 12 of Appendix C.
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We follow Dickerson, Mueller and Robotti (2023) and report both the ordinary least squares

(OLS) and generalized least squares (GLS) estimates (for methodological details, see e.g., Kan

et al., 2013). Lewellen et al. (2010) show that a high OLS R2 is a relatively low hurdle when

the test assets have a strong covariance structure. Therefore, the OLS R2 is not always a good

metric to evaluate asset pricing models. A solution proposed by Lewellen et al. (2010) is to

report the GLS cross-sectional R2 estimates, which are more robust to this problem.

First, we consider whether the annual cycle component of the bond market factor adds indeed

incremental cross-sectional pricing power beyond the other spectral components. In Panel A of

Table 6, we observe the prices of covariance risk estimated with OLS. Besides the factor models

introduced in Section 4.1, this panel shows the estimates for the spectral CAPMB and a factor

model including all the six spectral components. Using a 5% significance level, the annual

cycle component does not add incremental pricing power to this six-factor model. However, the

same conclusion is reached when considering the t-statistics of the other spectral components. In

contrast, for the GLS estimates in Panel B of Table 6, only the spectral component at scale j = 4

possesses incremental explanatory power for the cross-sectional variation in expected returns,

with values of 2.36 and 3.17 for t-statc and t-statm, respectively. Therefore, these results confirm

that the annual cycle component contains the most pricing signal.

Next, we evaluate the performance of the spectral CAPMB with the other factor models

introduced in Section 4.1. First, we observe in Table 6 that the OLS and GLS R2 estimates of

the spectral CAPMB are higher than those of the CAPMB. Furthermore, the R2 values are also

higher than all the other factor models, except the four-factor model of Bai et al. (2019) (BBW)

and the spectral six-factor model. To test whether these differences are statistically significant,

we perform the misspecification-robust test of Kan et al. (2013) under the null-hypotheses that

two different models have equal R2. The p-values for this test, together with the differences in

R2, are reported in Table 4. The table indicates that the improvement of the spectral CAPMB

over the CAPMB is not statistically significant, with p-values of 0.878 and 0.886 for the OLS and

GLS R2, respectively. The outperformance of the spectral CAPMB with respect to the other

factor models is also not statistically significant. However, none of the factor models significantly

outperforms another model at the 5% level.

Moreover, we compare our results to the findings of Dickerson, Mueller and Robotti (2023),

who study the same factor models. First, Dickerson, Mueller and Robotti (2023) find—using a

sample period from August 2004 to December 2016—that only the liquidity risk factor (LRF)

in the four-factor model of Bai et al. (2019) possesses incremental pricing power. Our results

in Table 6 are consistent with this finding, since LRF is the only risk factor in the BBW factor

model for which its price of covariance risk is statistically significant at the 5% level. Second,

Table 6 shows that the OLS and GLS R2 for the CAPMB are 0.914 and 0.114, respectively. This

means that the BBW factor model attains a higher cross-sectional fit, with an OLS R2 of 0.938

and a GLS R2 of 0.163. However, Table 4 indicates that these differences are not statistically

significant, which is consistent with the findings of Dickerson, Mueller and Robotti (2023).

Lastly, we observe in Table 6 that the CAPMB outperforms all the other factor models, which

are: DEFTERM, CAPM, HKMSF, and HKM. Interestingly, some of these factor models have

been shown to possess significant explanatory power for the cross-section of expected corporate
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5 RESULTS

Table 4
Differences in cross-sectional (CSR) R2 for 7 different factor models in corporate bond pricing. (i) the
CAPM with the corporate bond market factor (CAMPB); (ii) the 4-factor model of Bai et al. (2019)
(BBW); (iii) the Fama and French (1993) two-factor model (DEFTERM); (iv) the CAPM with the stock
market factor (CAPM); (v) the single-factor intermediary capital model of He et al. (2017, HKMSF); (vi)
the original two-factor model proposed by He et al. (2017, HKM), which also includes the stock market

factor (MKTS); (vii) the spectral bond market factor for scale j = 4 (CAPMB(4)); (viii) the spectral
factor model with all 6 frequency-specific components (6 freq.). The models are estimated using monthly
excess returns (in percentages) on 32 test portfolios, from 2008M9 to 2021M12. Each entry in row i
and column j reports the difference in CSR R2 between model i and model j. Misspecification-robust
p-values of Kan et al. (2013), for the test under the null hypothesis of equal CSR R2, are reported in
square brackets. The normal tests are used (instead of sequential) for non-nested models.

BBW DEFTERM CAPM HKMSF HKM CAPMB(4) 6 freq.

Panel A: OLS

CAPMB -0.024 0.065 0.037 0.063 0.032 -0.017 -0.057
[0.906] [0.300] [0.752] [0.670] [0.751] [0.878] [0.482]

BBW 0.089 0.061 0.087 0.056 0.007 -0.033
[0.281] [0.443] [0.440] [0.395] [0.929] [0.660]

DEFTERM -0.028 -0.002 -0.033 -0.082 -0.122
[0.818] [0.989] [0.766] [0.517] [0.284]

CAPM 0.026 -0.005 -0.054 -0.094
[0.594] [0.765] [0.510] [0.461]

HKMSF -0.031 -0.080 -0.120
[0.422] [0.332] [0.389]

HKM -0.049 -0.089
[0.602] [0.481]

CAPMB(4) -0.040
[0.696]

Panel B: GLS

CAPMB -0.049 0.060 0.083 0.088 0.083 -0.009 -0.063
[0.350] [0.197] [0.122] [0.151] [0.126] [0.886] [0.265]

BBW 0.109 0.132 0.137 0.132 0.040 -0.014
[0.110] [0.057] [0.070] [0.058] [0.495] [0.790]

DEFTERM 0.023 0.028 0.023 -0.069 -0.123
[0.613] [0.567] [0.618] [0.346] [0.168]

CAPM 0.005 0.000 -0.092 -0.146
[0.778] [0.960] [0.153] [0.085]

HKMSF -0.005 -0.097 -0.151
[0.592] [0.149] [0.094]

HKM -0.092 -0.146
[0.153] [0.086]

CAPMB(4) -0.054
[0.828]

bond returns, such as HKM (Hou, Xue & Zhang, 2015). However, we show that these popular

factor models, especially the two-factor models, cannot outperform the single-factor CAPMB

and spectral CAPMB.

Given the results presented above, and the objective of this paper to achieve dimensionality

reduction in the factor space, it is interesting to analyse the potential of the spectral bond

market factor in crowding out other risk factors. For instance, does LRF still possess incremental

explanatory power in the BBW four-factor model when the bond market factor is replaced by

its annual cycle component? Table 5 presents the prices of covariance risk for this model.

21
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Table 5
This table presents the prices of covariance risk (λ) estimated for the four-factor model of Bai et al. (2019,
BBW), where the bond market factor (MKTB) is replaced by its annual cycle component. The annual
cycle component of MKTB is defined as the spectral MKTB at scale j = 4. The model is estimated using
monthly excess returns (in percentages) on 32 test portfolios, from 2008M9 to 2021M12. The t-statistics
for correct (t-statc) and potentially misspecified models (Kan et al., 2013, t-statm) are in parentheses.
Furthermore, p-values for the null hypothesis of R2 = 1 are in brackets (Kan et al., 2013). The lambdas
(except λ0) are multiplied by 100.

Price of covariance risk

λ̂0 λ̂(4) λ̂DRF λ̂CRF λ̂LRF

Panel A: OLS
Estimate 0.18 54.40 5.65 -0.18 -13.90
t-statc (2.16) (1.26) (0.57) (-0.04) (-0.48)
t-statm (1.85) (1.11) (0.40) (-0.03) (-0.33)
R2 0.941

[0.451]

Panel B: GLS
Estimate 0.05 29.67 -0.32 -0.71 15.52
t-statc (2.33) (2.49) (-0.08) (-0.22) (1.55)
t-statm (2.18) (1.93) (-0.07) (-0.22) (1.44)
R2 0.170

[0.003]

Comparing the t-statistics for the risk prices in this table with the original BBW model in Table

6, we conclude that the incremental pricing power of LRF disappears when the bond market

factor is replaced by its annual cycle component. Specifically, the GLS estimates in Panel B of

Table 5 indicate that the risk prices of DRF, CRF and LRF are statistically insignificant at the

5% level in this adjusted BBW model. However, the spectral bond market factor is statistically

significant.

To conclude, we find that dimensionality reduction in corporate bond factors models can be

achieved by decomposing risk factor in the frequency domain, thereby answering our research

question. Specifically, when substituting the bond market factor in the BBW factor model

with its annual cycle component, the incremental explanatory power of LRF loses its statistical

significance. This implies that the annual cycle component captures (at least part of) the

information contained in LRF. Besides that, Figure 2 plots LRF and the spectral components

of the bond market factor. The annual cycle component (i.e., j = 4) is highly correlated with

LRF, and seems to be a slightly more persistent version. In Figure 4 of Appendix C, we observe

that the correlation is almost as high as its correlation with the original bond market factor.

For this reason, we term the annual cycle component as the liquidity cycle of the bond market

factor.

Interestingly, the liquidity cycle is shorter than the business cycle (j = 6, see Table 1), which

is consistent with previous literature. For instance, Kamara et al. (2016) find that the liquidity

factor is only priced for relatively short horizons (1 to 6 months when using aggregation). Other

risk factors commonly used for equities, such as value, are priced over longer horizons (2 to 3

years).

Even though, Kamara et al. (2016) study horizon-specific pricing in the equity market,

the strong pricing signal of a liquidity cycle in the corporate bond market can be motivated
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economically. Let us assume that business-cycle components of risk factors have the strongest

signal for equities.‡‡ Then, following Kamara et al. (2016), we would expect the components

with cycles shorter than the business cycle to be important in the—over-the-counter—corporate

bond market, because of its illiquidity compared to the stock market.

‡‡Bandi and Tamoni (2023) find that the business-cycle component of a consumption risk factor explains the
cross-section of equity returns.
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Table 6
This table presents the prices of covariance risk (λ) estimated under: (i) the CAPM with the corporate bond market factor (CAMPB); (ii) the 4-factor model
of Bai et al. (2019) (BBW); (iii) the Fama and French (1993) two-factor model (DEFTERM); (iv) the CAPM; (v) the single-factor intermediary capital model
of He et al. (2017, HKMSF); (vi) the original two-factor model proposed by He et al. (2017, HKM), which also includes the stock market factor (MKTS); (vii)

the spectral CAPMB with the bond market factor at scale j = 4 (CAPMB(4)); (viii) the spectral factor model with all 6 frequency-specific components (6
freq.). The models use the monthly excess returns (in percentages) on 32 test portfolios from 2008M9 to 2021M12. The t-statistics for correct (t-statc) and
potentially misspecified models (Kan et al., 2013, t-statm) are in parentheses. Furthermore, p-values for the null hypothesis of R2 = 1 are in brackets (Kan et
al., 2013). The lambdas (except λ0) are multiplied by 100.

Panel A: Price of covariance risk (OLS)

CAPMB BBW DEFTERM CAPM HKMSF

λ̂0 λ̂MKTB λ̂0 λ̂MKTB λ̂DRF λ̂CRF λ̂LRF λ̂0 λ̂DEF λ̂TERM λ̂0 λ̂MKTS λ̂0 λ̂CPTLT

Estimate 0.03 13.67 0.08 15.62 -3.83 2.04 0.60 0.16 13.62 1.78 0.28 5.59 0.37 3.50
t-statc (0.18) (1.59) (1.17) (1.04) (-0.25) (0.49) (0.02) (2.82) (1.98) (0.51) (2.10) (1.51) (2.83) (1.59)
t-statm (0.17) (1.58) (0.84) (0.91) (-0.18) (0.45) (0.01) (2.68) (1.85) (0.54) (2.09) (1.49) (2.83) (1.58)
R2 0.914 0.938 0.849 0.877 0.851

[0.708] [0.387] [0.310] [0.455] [0.325]

HKM CAPMB(4) 6 freq.

λ̂0 λ̂MKTS λ̂CPTLT λ̂0 λ̂(4) λ̂0 λ̂(1) λ̂(2) λ̂(3) λ̂(4) λ̂(5) λ̂(>5)

Estimate 0.23 9.14 -2.27 0.22 55.02 0.10 10.27 5.34 62.85 21.70 71.06 -162.82
t-statc (2.08) (1.06) (-0.41) (1.37) (1.70) (0.94) (0.70) (0.39) (1.42) (0.68) (0.86) (-0.93)
t-statm (1.33) (0.80) (-0.30) (1.35) (1.69) (0.90) (0.68) (0.40) (1.30) (0.59) (0.76) (-0.79)
R2 0.882 0.931 0.971

[0.367] [0.779] [0.646]

Panel B: Price of covariance risk (GLS)

CAPMB BBW DEFTERM CAPM HKMSF

λ̂0 λ̂MKTB λ̂0 λ̂MKTB λ̂DRF λ̂CRF λ̂LRF λ̂0 λ̂DEF λ̂TERM λ̂0 λ̂MKTS λ̂0 λ̂CPTLT

Estimate 0.04 13.02 0.04 12.27 -7.53 -0.14 24.74 0.05 8.45 4.40 0.05 3.37 0.05 1.93
t-statc (2.11) (2.08) (1.71) (1.13) (-1.05) (-0.04) (2.72) (2.27) (1.86) (1.58) (2.45) (1.17) (2.64) (1.09)
t-statm (1.95) (2.05) (1.60) (1.07) (-1.02) (-0.04) (2.55) (2.12) (1.80) (1.54) (2.16) (1.10) (2.35) (1.05)
R2 0.114 0.163 0.054 0.031 0.026

[0.004] [0.003] [0.000] [0.000] [0.000]

HKM CAPMB(4) 6 freq.

λ̂0 λ̂MKTS λ̂CPTLT λ̂0 λ̂(4) λ̂0 λ̂(1) λ̂(2) λ̂(3) λ̂(4) λ̂(5) λ̂(>5)

Estimate 0.05 3.11 0.18 0.05 44.81 0.04 1.57 11.63 8.96 33.60 56.22 -6.00
t-statc (2.43) (0.68) (0.06) (2.64) (3.04) (2.07) (0.20) (1.46) (0.22) (3.17) (1.27) (-0.08)
t-statm (1.99) (0.54) (0.05) (2.50) (2.82) (1.81) (0.18) (1.30) (0.19) (2.36) (0.86) (-0.06)
R2 0.031 0.123 0.177

[0.000] [0.004] [0.001]
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6 CONCLUSION

6 Conclusion

We investigate whether dimensionality reduction can be achieved in the corporate bond factor

space by decomposing risk factors into orthogonal frequency-specific components. From an

economic perspective, frequency-specific systematic risk may be caused by the dependence of

asset returns on lagged risk factors (Kamara et al., 2016). Therefore, especially for the over-

the-counter corporate bond market, where illiquidity and high trading costs lead to infrequent

trading, we would expect systematic risk to be frequency-dependent. While traditional factor

models restrict systematic risk to be constant across frequencies, we use the spectral factor model

of Bandi et al. (2021), which relaxes this restriction. In this way, dimensionality reduction can

be achieved by separating signal from noise.

We find that a spectral CAPMB with an annual cycle component of the bond market factor—

capturing cycles between 8 and 16—months contains the strongest pricing signal. The OLS and

GLS R2 for this spectral CAPMB are higher than those for the traditional CAPMB and other

(multi)factor models. Only the four-factor model of Bai et al. (2019) can outperform the spectral

CAPMB, although the differences in R2 are small and not statistically significant.

Interestingly, we show that only the liquidity risk factor in the four-factor model of Bai

et al. (2019) possesses incremental pricing power. However, when the bond market factor is

replaced by its annual cycle component in this four-factor model, the liquidity risk factor loses

its incremental pricing power. This finding indicates that the annual cycle component extracts

the pricing signal that is present in the liquidity risk factor. More generally, it shows that spectral

factors achieve dimensionality reduction in corporate bond factor models, thereby answering our

research question.

From an economic perspective, the annual cycle component can be interpreted as the liquidity

cycle of the bond market factor. This conclusion is motivated by several observations. First, the

annual cycle component captures (at least part of) the pricing power of the liquidity factor in

the four-factor model of Bai et al. (2019). Second, the liquidity risk factor is highly correlated

with the annual cycle component compared to other spectral components of the bond market

factor. Lastly, also Kamara et al. (2016) find that liquidity risk is priced over the short term.

However, further work should more formally study the role of liquidity and frequency in the

corporate bond market.

Finally, an interesting area for future research would be the use of the spectral factor model to

construct a consumption-based asset pricing model. Elkamhi et al. (2024) find that a long-term

consumption risk factor—constructed by aggregating consumption growth of wealthy households

over 24 months—can price the cross-section of corporate bond returns for a diverse set of test

portfolios. However, it would be interesting to formally study the role of frequency in this factor

model along the lines of Bandi and Tamoni (2023).
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A DATA

A Data

In Section A.1, we describe how the risk factors for the four-factor model of Bai et al. (2019)

are constructed.

A.1 BBW four-factor model

The four-factor model of Bai et al. (2019, BBW) contains a liquidity risk (LRF), downside risk

(DRF), and credit risk (CRF) factor in addition to the bond market factor (MKTB). MKTB

is defined as the value-weighted excess return on the corporate bond market. We discuss the

construction of the other three risk factors below. The factors are constructed free of lead/lag

errors by following the procedure of Dickerson, Mueller and Robotti (2023). Moreover, we do

not winsorize the excess bond market returns when constructing MKTB, as in the original work

of Bai et al. (2019). Dickerson, Mueller and Robotti (2023) show that this mechanically prefers

multifactor models over the bond CAPM (CAPMB).

Liquidity risk factor (LRF). This risk factor for month t, LRFt, is constructed by sorting

bonds into 5×5 portfolios by rating and an illiquidity measure, in each month t. Having formed

these portfolios, value-weighted long/short returns are calculated for each rating quintile, by

subtracting the value-weighted return on the lowest-quintile illiquidity portfolio from the highest-

quintile illiquidity portfolio. Then, LRF is the simple average of these long/short portfolios. The

illiquidity measure is defined as

ILLIQt = −Ct(∆pi,t,d,∆pi,t,d+1), where ∆pi,t,d = log(Pi,t,d/Pi,t,d−1),

and Pi,t,d is the price of bond i at day d of month t. Following Bai et al. (2019) and Dickerson,

Mueller and Robotti (2023), ∆pi,t,d can only be calculated if the number of working days between

Pi,t,d and Pi,t,d−1 is less than 8. Furthermore, Ct is only identified if there are at least 5

observations of (∆pi,t,d+1, ∆pi,t,d) in month t. Logically, the data used to construct ILLIQt is

obtained from the panel dataset constructed in Section 4.1.

Downside risk factor (DRF). This risk factor for month t, DRFt, is constructed by sorting

bonds into 5×5 portfolios by rating and a downside risk measure, for each month t. Using these

portfolios, DRFt is defined as the simple average (across rating quintiles) of value-weighted

long/short portfolio returns. For each rating quintile, the long/short portfolio return is the

value-weighted return on the highest downside risk quintile-portfolio minus the value-weighted

return on the lowest downside risk quintile-portfolio. Furthermore, the downside risk measure is

the absolute value of a 5% value-at-risk estimate (VaR5), which is calculated using the monthly

returns in the past 36 months. Similar to Dickerson, Mueller and Robotti (2023), we impose

the restriction that DRFt is only identified when a bond has a valid return for at least 24 of the

36 months.

Credit risk factor (CRF). This risk factor at time t, CRFt is defined as the simple average

on three value-weighted returns: CRFVaR5, CRFILLIQ and CRFREV. First, the 5× 5 portfolios

sorted on rating and VaR5 are used to calculate CRFVaR5. Namely, for month t, CRFVaR5 is

obtained by subtracting the value-weighted returns on the highest rating quintile-portfolios from

the lowest rating quintile-portfolios. Similarly, CRFREV is defined as the difference between the
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value-weighted returns on the lowest rating and highest rating portfolios, from a sort on rating

and short-term reversal (REV) quintiles. Finally, CRFILLIQ is defined in the same way but then

from 5× 5 portfolios sorted on rating and ILLIQ.
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Table 7
This table provides an overview of the data cleaning procedure for the TRACE and FISD corporate bond databases.

Rule Description TRACE/FISD filter

Remove bonds that are close to
default

Remove intraday bond transactions with a trade price
greater than 1,000 USD or less than 5 USD

TRACE:
(rptd pr < 1000) & (rptd pr > 5)

Remove bonds that do not
trade on public exchanges in
the US

Remove bonds issued under Rule 144A, issued through
private placement, not traded in USD, and from which the
issuers are not based in the US.

FISD:
(1) RULE 144A == ’N’
(2) PRIVATE PLACEMENT == ’N’
(3) FOREIGN CURRENCY == ’N’
(4) COUNTRY DOMICILE == ’USA’

Remove special corporate
bonds

Remove mortgage backed or asset backed bonds, equity
linked or convertible bonds, structured notes, and agency
backed bonds.

FISD:
(1) ASSET BACKED == ’N’
(2) CONVERTIBLE == ’N’
(3) BOND TYPE !%in% ’X’ where ’X’ ==
(i) Agency, muni, or government bonds: {TXMU, CCOV, CPAS, MBS,
FGOV, USTC, USBD, USNT, USSP, USSI, FGS, USBL, ABS,
O30Y, O10Y, O3Y, O5Y, O4W, CCUR, O13W, O52W, O26W}
(ii) Agency-backed bonds: {ADEB, AMTN, ASPZ, EMTN, ADNT, ARNT

Remove bonds with a variable
coupon rate

FISD:
COUPON TYPE != ’V’

Remove bonds with a maturity
of less than one year
Remove labelled bonds Remove all transactions that are classified: locked-in, when-

issued, or have a special sales condition.
TRACE:
(1) lckd in ind != ’Y’
(2) wis fl != ’Y’
(3) (sale cndtn cd == ’None’) | (sale cndtn cd == ’@’)

Remove all trades that have a
two-day settlement period or
longer

TRACE:
(1) days to sttl ct == ’002’
(2) days to sttl ct == ’001’
(3) days to sttl ct == ’000’
(4) days to sttl ct == ’None’

Remove small transactions Remove intraday transactions with daily par volume less
than 10,000 USD.

TRACE:
entrd vol qt >= 10000

Remove cancelled transactions Also adjust for transactions that are corrected or reversed. TRACE: see Dick-Nielsen (2014).
Remove bonds with a special
interest payment structure

Bonds for which the payment structure is ’N/A’, ’undocu-
mented by FISD’, ’bi-monthly’ and ’Variable Coupon’

FISD:
INTEREST FREQUENCY !%in% c(-1, 13, 14, 15, 16)

Remove bonds for accrued
interest cannot be computed

Remove bonds with missing DAY COUNT BASIS, COUPON,
COUPON TYPE, OFFERING DATE, DATED DATE and IN-
TEREST FREQUENCY.
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B Proof Theorem 3.1.

In this appendix, we prove Theorem 3.1, which states that the aggregate beta on the traditional

factor model (Eq. (1)) is a linear combination of the spectral betas in the spectral factor model

(Eq. (14)).

Following the theorem, we assume that x = {(yt, xt)⊺}t∈Z is a covariance stationary process.

Furthermore, we assume that the frequency-specific beta at scale j is given by β(j) =
C[y(j)t ,x

(j)
t ]

V[x(j)
t ]

.

To stay within the context in which the theorem was presented, we also assume that yt and

xt are the excess asset return and risk factor at time t, respectively. Such that the traditional

factor model is given by (Eq. (1)): yt = α+ βxt + ut.

Proof. We start the proof by deriving an expression for the aggregate beta (β). Specifically,

since the traditional factor model is just a simple linear regression (Eq. (1)), where β is the

slope coefficient of this equation, we use the well-known fact that

β =
C[yt, xt]
V[xt]

. (19)

Next, we need to prove that the β in Eq. (19) can be expressed as
∑∞

j=1 v
(j)β(j), where

v(j) =
V[x(j)

t ]
V[xt]

and β(j) is the spectral beta at scale j. In order to do so, we use the assumption of

Theorem 3.1 that x is a covariance stationary time series. Following our discussion in Section

3.2, this means that x can be expressed as an extended Wold representation. Thus, we use Eq.

(13), and write xt =
∑∞

j=1 x
(j)
t , where xt = (yt xt)

⊺. Then, the β in Eq. (19) can be expressed

as

β =
C
[∑∞

j=1 y
(j)
t ,
∑∞

p=1 x
(p)
t

]
V [xt]

, (20)

where j and p indicate scales.

Moreover, we follow the discussion of Ortu et al. (2020), and apply the orthogonality property

of x
(j)
t . Specifically, we use that yt and xt are orthogonal to each other, and that both yt and

xt are orthogonal within processes. Then, the β in Eq. (20) can be expressed as

β =

∑∞
j=1C

[
y
(j)
t , x

(j)
t

]
V [xt]

, (21)

since C[y(j)t , x
(p)
t ] = 0 for all j ̸= p.

Finally, we use the term v(j) =
V[x(j)

t ]
V[xt]

, and our assumption that β(j) =
C[y(j)t ,x

(j)
t ]

V[x(j)
t ]

, to refor-

mulate Eq. (21). Specifically, we can express β as

β =
1

V [xt]

∞∑
j=1

C
[
y
(j)
t , x

(j)
t

]
·
V
[
x
(j)
t

]
V
[
x
(j)
t

] ,
=

∞∑
j=1

β(j) ·
V
[
x
(j)
t

]
V [xt]

,
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=
∞∑
j=1

β(j) · v(j).

In the second expression above, we used the definition of β(j), and multiplied Eq. (21) by 1 (i.e.,
V[x(j)

t ]

V[x(j)
t ]

) Furthermore, to derive the third expression, we applied the definition of v(j).
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C Additional results: Corporate bonds

In this appendix, we present additional results for the spectral factor models estimated with cor-

porate bond returns. Specifically, in Appendix C.1, we compare the spectral CAPMB—including

the annual cycle component of the bond market factor—to the nontraded-factor models. Fur-

thermore, in Appendix C.2, we demonstrate that the results presented in this paper are robust

to setting J = 6. We plot the annual cycle component of the bond market factor in Figure 3.

The correlations between this annual cycle component and the bond market factor and liquidity

risk factor (LRF) of Bai et al. (2019) are shown in Figure 4. Finally, Table 12 reports the prices

of multivariate beta risk (i.e., gammas, Kan et al., 2013) for the traded-factor models in Section

5.2 and the spectral CAPMB.

C.1 Cross-sectional pricing: Nontraded-factor models

We compare the CAPMB and the spectral CAPMB (CAPMB(4)) to nontraded-factor models.

The CAPMB is the single-factor model with the bond market factor (MKTB) as a risk factor.

Furthermore, the spectral CAPMB has the spectral component of MKTB at scale j = 4—or, in

other words, its annual cycle component—as a risk factor.

We use the same nontraded factors as Dickerson, Mueller and Robotti (2023), which are

introduced below. Important risk factors in the corporate bond market are usually proxied by

nontraded factors, such as liquidity risk. While many studies found nontraded factors that are

priced significantly in the corporate bond market, recent work by Dickerson, Mueller and Robotti

(2023) reveals that most of these risk factors attain statistically insignificant risk premia. We

follow the framework of Dickerson, Mueller and Robotti (2023) and evaluate these nontraded

factors over a novel sample period from September 2008 to December 2021. Besides that, we

compare the nontraded-factor models to the spectral CAPMB.

We conclude that these nontraded factors do not add incremental explanatory power over

this novel sample period. Furthermore, the spectral CAPMB achieves a higher cross-sectional

R2 than 2 out of the 6 factor models. However, all nontraded-factor models that we consider

contain between 2 and 8 risk factors, and do not form a fair comparison for the single-factor

CAPMB. Therefore, we use the model-misspecification-robust t-statistics of Kan et al. (2013),

which indicate that the differences in R2 are not statistically significant.

The asset pricing models

First, we introduce the asset pricing models below. We discuss only the model definitions, and

more details are provided by Dickerson, Mueller and Robotti (2023).

Liquidity factor models (LIQAM and LIQPS). We consider two factor models that capture

liquidity risk. The first factor model (LIQAM) includes the FF3 factors introduced in Section

??, the two risk factors of the DEFTERM model introduced in Section 4.1, and the liquidity

risk measure of Amihud (2002, AM). Furthermore, the second liquidity factor model (LIQPS)

is defined as LIQAM, but with the liquidity risk measure of Pástor and Stambaugh (2003, PS)

Lin, Wang and Wu (2011); Chung, Wang and Wu (2019); Bali, Subrahmanyam and Wen (2021); Elkamhi et
al. (2024)
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instead of AM. We use the AM and PS factors provided by Dickerson, Mueller and Robotti

(2023).

Macroeconomic uncertainty factor model (MACRO) This nontraded-factor model is recently

introduced by Bali et al. (2021). It includes the macroeconomic uncertainty index of Jurado,

Ludvigson and Ng (2015) and MKTS. The macroeconomic uncertainty index is defined as the

conditional volatility of the residual term in a forecast model for 279 macroeconomic indicators.

Thus, the residual term captures unforecastable macroeconomic news, and its volatility is a

proxy of macroeconomic uncertainty. The data is provided by Dickerson, Mueller and Robotti

(2023), but the code to construct the time series can be found on Turan Bali’s website.

Nontraded intermediary capital factor model (HKMNT). This is the nontraded-factor model

of He et al. (2017), including the nontraded version of CPTLT in Section 4.1, and MKTS. These

risk factors are collected from Zhigou He’s website.

Volatility factor models (VOLAM and VOLPS). Finally, we consider two volatility factor

models. The first factor model (VOLAM) is based on the LIQAM model introduced above,

but includes also the change in the CBOE Volatility Index (VIX) as a nontraded risk factor.

Similarly, the second volatility factor model (VOLPS) is equivalent to VOLAM, but with the

AM liquidity risk factor substituted by PS.

Cross-sectional pricing of expected corporate bond returns

In this section, we evaluate the accuracy of the nontraded-factor models in pricing the cross-

section of expected corporate bond returns. Similar to the discussion in Section 5, we report the

prices of covariance risk in Table 8. Additionally, we present the prices of multivariate beta risk

in Table 9. Besides the risk prices, the tables also report the cross-sectional R2, the t-statistics

under potential model misspecification (t-statm; Kan et al., 2013), and the heteroskedasticity-

and autocorrelation-consistent GMM standard errors (t-statc).

First, using a 10% significance level, the model-misspecification-robust t-statistics of Kan et

al. (2013) indicate that none of the nontraded risk factors is priced statistically significantly.

This holds for both the prices of covariance risk (Table 8) and the prices of multivariate beta

risk (Table 9). Note that this finding is consistent with Dickerson, Mueller and Robotti (2023),

even though we analyse the data on a novel sample period.

Furthermore, when comparing the prices of covariance risk in Table 8 with the prices of

multivariate beta risk in Table 9, we observe that the R2 estimates are the same across tables.

This can be explained by the fact that the residuals of both regression equations are the same

(Kan et al., 2013). Specifically, the prices of multivariate beta risk are a linear transformation

of the prices of covariance risk, γ = V(xt)λ, where xt is a vector of risk factors. This holds,

not only for the nontraded-factor models, but the R2 estimates for the traded-factor models in

Table 6 and Table 12 are also equivalent to each other.

Moreover, Table 10 reports the differences in cross-sectional R2 for the spectral CAPMB

and CAPMB with the nontraded-traded factor models. We observe that most of the non-traded

factor models outperform the CAPMB and spectral CAPMB. However, Table 10 indicates that

the differences in cross-sectional R2 are not statistically significant, with p-values for the null-

https://sites.google.com/a/georgetown.edu/turan-bali/data-working-papers

35

https://sites.google.com/a/georgetown.edu/turan-bali/data-working-papers


C ADDITIONAL RESULTS: CORPORATE BONDS

hypothesis of equal R2 between 0.228 and 0.955. Also this finding is consistent with Dickerson,

Mueller and Robotti (2023).

Table 8
This table presents the prices of covariance risk (λ) estimated under: (i) the macroeconomic uncertainty
model of Bali et al. (2021, MACRO); (ii) the non-traded intermediary capital model of He et al. (2017,
HKMNT); (iii) a 6-factor model including the liquidity risk measure of Pástor and Stambaugh (2003,
LIQPS) for corporate bonds; (iv) a similar factor model as LIQPS but with liquidity risk measured as
Amihud (2002, LIQAM); (v) the LIQPS factor model extended with the change in VIX as a risk factor
(VOLPS); (vi) the LIQAM factor model extended with the change in VIX as a risk factor (VOLAM).
The models use the monthly excess returns (in percentages) on 32 test portfolios from 2008M9 to
2021M12. The t-statistics for correct (t-statc) and potentially misspecified models (Kan et al., 2013,
t-statm) are in parentheses. Furthermore, p-values for the null hypothesis of R2 = 1 are in brackets (Kan
et al., 2013). The lambdas (except λ0) are multiplied by 100. For conciseness, we omit the estimates
for some of the risk factors.

Panel A: Price of covariance risk (OLS)

MACRO HKMNT LIQPS

λ̂0 λ̂MKTB λ̂UNC λ̂0 λ̂MKTS λ̂CPTL λ̂0 λ̂MKTS λ̂PS

Estimate 0.14 8.59 -6.17 0.17 12.11 -4.15 0.14 6.34 -7.58
t-statc (1.54) (1.58) (-0.67) (1.87) (1.49) (-0.84) (1.58) (0.73) (-1.33)
t-statm (1.35) (1.57) (-0.67) (1.20) (1.33) (-0.71) (1.18) (0.60) (-0.86)
R2 0.944 0.894 0.925

[0.701] [0.498] [0.186]

LIQAM VOLPS VOLAM

λ̂0 λ̂MKTS λ̂AM λ̂0 λ̂MKTS λ̂VIX λ̂0 λ̂MKTS λ̂VIX

Estimate 0.15 10.35 -11.42 0.12 12.59 7.98 0.13 13.13 7.08
t-statc (1.26) (0.93) (-1.47) (1.15) (0.95) (1.30) (1.35) (0.92) (0.67)
t-statm (1.13) (0.97) (-1.56) (1.08) (0.96) (1.39) (1.32) (0.91) (0.60)
R2 0.953 0.969 0.965

[0.528] [0.428] [0.333]

Panel B: Price of covariance risk (GLS)

MACRO HKMNT LIQPS

λ̂0 λ̂MKTB λ̂UNC λ̂0 λ̂MKTS λ̂CPTL λ̂0 λ̂MKTS λ̂PS

Estimate 0.04 12.05 -2.79 0.05 -0.93 3.16 0.03 2.54 -2.08
t-statc (2.15) (2.29) (-0.44) (2.80) (-0.24) (1.11) (1.36) (0.57) (-0.68)
t-statm (2.04) (2.28) (-0.45) (2.29) (-0.19) (0.91) (1.24) (0.45) (-0.55)
R2 0.119 0.045 0.138

[0.004] [0.001] [0.004]

LIQAM VOLPS VOLAM

λ̂0 λ̂MKTS λ̂AM λ̂0 λ̂MKTS λ̂VIX λ̂0 λ̂MKTS λ̂VIX

Estimate 0.03 3.03 1.75 0.03 2.79 0.46 0.03 4.84 3.24
t-statc (1.40) (0.65) (0.34) (1.35) (0.65) (0.16) (1.44) (0.84) (0.87)
t-statm (1.26) (0.52) (0.33) (1.23) (0.53) (0.14) (1.30) (0.67) (0.59)
R2 0.137 0.138 0.143

[0.003] [0.003] [0.003]
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Table 9
This table presents the prices of multivariate beta risk (γ) estimated under: (i) the macroeconomic
uncertainty model of Bali et al. (2021, MACRO); (ii) the non-traded intermediary capital model of He et
al. (2017, HKMNT); (iii) a 6-factor model including the liquidity risk measure of Pástor and Stambaugh
(2003, LIQPS) for corporate bonds; (iv) a similar factor model as LIQPS but with liquidity risk measured
as Amihud (2002, LIQAM); (v) the LIQPS factor model extended with the change in VIX as a risk factor
(VOLPS); (vi) the LIQAM factor model extended with the change in VIX as a risk factor (VOLAM). The
models use the monthly excess returns (in percentages) on 32 test portfolios from 2008M9 to 2021M12.
The t-statistics for correct (t-statc) and potentially misspecified models (Kan et al., 2013, t-statm) are in
parentheses. Furthermore, p-values for the null hypothesis of R2 = 1 are in brackets (Kan et al., 2013).
For conciseness, we omit the estimates for some of the risk factors.

Panel A: Price of beta risk (OLS)

MACRO HKMNT LIQPS

γ̂0 γ̂MKTB γ̂UNC γ̂0 γ̂MKTS γ̂CPTL γ̂0 γ̂MKTS γ̂PS

Estimate 0.14 0.42 -0.62 0.17 1.54 0.98 0.14 1.41 -0.57
t-statc (1.54) (2.42) (-0.91) (1.87) (2.19) (0.84) (1.58) (1.83) (-1.72)
t-statm (1.35) (2.38) (-0.88) (1.20) (2.22) (0.75) (1.18) (1.80) (-1.02)
R2 0.944 0.894 0.925

[0.701] [0.498] [0.186]

LIQAM VOLPS VOLAM

γ̂0 γ̂MKTS γ̂AM γ̂0 γ̂MKTS γ̂VIX γ̂0 γ̂MKTS γ̂VIX

Estimate 0.15 1.98 -0.42 0.12 1.92 -0.41 0.13 1.97 -0.39
t-statc (1.26) (1.83) (-0.86) (1.15) (1.94) (-0.71) (1.35) (2.15) (-0.58)
t-statm (1.13) (2.17) (-1.02) (1.08) (2.04) (-0.71) (1.32) (2.30) (-0.55)
R2 0.953 0.969 0.965

[0.528] [0.428] [0.333]

Panel B: Price of beta risk (GLS)

MACRO HKMNT LIQPS

γ̂0 γ̂MKTB γ̂UNC γ̂0 γ̂MKTS γ̂CPTL γ̂0 γ̂MKTS γ̂PS

Estimate 0.04 0.52 -0.39 0.05 0.63 1.44 0.03 0.82 0.02
t-statc (2.15) (3.10) (-0.85) (2.80) (1.22) (1.53) (1.36) (1.53) (0.08)
t-statm (2.04) (3.08) (-0.86) (2.29) (1.15) (1.39) (1.24) (1.38) (0.07)
R2 0.119 0.045 0.138

[0.004] [0.001] [0.004]

LIQAM VOLPS VOLAM

γ̂0 γ̂MKTS γ̂AM γ̂0 γ̂MKTS γ̂VIX γ̂0 γ̂MKTS γ̂VIX

Estimate 0.03 0.81 0.45 0.03 0.83 -0.79 0.03 0.83 -0.65
t-statc (1.40) (1.52) (1.80) (1.35) (1.56) (-1.51) (1.44) (1.53) (-1.37)
t-statm (1.26) (1.36) (1.60) (1.23) (1.40) (-1.43) (1.30) (1.36) (-1.23)
R2 0.137 0.138 0.143

[0.003] [0.003] [0.003]
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Table 10
This table presents the differences in cross-sectional R2 for the spectral CAPMB (CAPMB(4)) and
CAPMB with the nontraded-factor models introduced in the tables above. The value in row i and
column j is the difference between the R2 of model i and j. The spectral CAPMB includes the spectral
component of the bond market factor at scale j = 4 as a risk factor. Furthermore, we report the model-
misspecification-robust p-values for the test of equal R2 of Kan et al. (2013) in brackets. The results
are obtained using monthly excess returns (in percentages) on 32 test portfolios from September 2008 to
December 2021. Finally, the OLS and GLS R2 estimates are reported in Panels A and B, respectively.

MACRO HKMNT LIQPS LIQAM VOLPS VOLAM

Panel A: OLS

CAPMB(4) -0.013 0.037 0.006 -0.022 -0.038 -0.034
[0.832] [0.695] [0.948] [0.836] [0.647] [0.660]

CAPMB -0.030 0.021 -0.011 -0.039 -0.055 -0.051
[0.499] [0.800] [0.837] [0.558] [0.453] [0.485]

Panel B: GLS

CAPMB(4) 0.004 0.078 -0.015 -0.014 -0.015 -0.020
[0.955] [0.238] [0.893] [0.892] [0.891] [0.837]

CAPMB -0.005 0.069 -0.023 -0.023 -0.024 -0.029
[0.648] [0.291] [0.768] [0.753] [0.768] [0.684]

C.2 Robustness analysis: Six spectral components

In this appendix, we decompose the bond market factor (MKTB) into J = 6 frequency-specific

components, as discussed in Section 3. The bond market factor is defined as the value-weighted

return across all corporate bonds in excess of the one-month US Treasury bill rate (see Section

4.1).

Table 11 presents the prices of covariance risk (i.e., lambdas) estimated for a six-factor

model with the spectral components between scales j = 1 and j = 6 as risk factors. We aim

to determine whether the spectral component at scale j = 4—the annual cycle component—

contains more cross-sectional pricing signal than the other components. This is assessed through

the statistical significance of the prices of covariance risk, which determines the incremental

explanatory power of the risk factors (Cochrane, 2009). In Panel A of Table 11, we observe the

OLS estimates of the risk prices. The t-statistics under correct model specification (t-statc) that

account for heteroskedasticity and autocorrelation, and under potential model misspecification

(t-statm; Kan et al., 2013), indicate that the prices of covariance risk are statistically insignificant

for all spectral components at the 10% significance level. However, the GLS estimates in Panel

B of Table 11 indicate that the price of covariance risk is statistically significant only for the

annual cycle component, thus possessing incremental cross-sectional pricing power beyond the

other spectral components of MKTB.

To conclude, the annual cycle component contains the most pricing signal in the spectral

factor model with six frequency-specific components of MKTB. Especially, the annual cycle com-

ponent provides more signal than the business cycle component at scale j = 6. This is interesting

since Elkamhi et al. (2024) obtain a consumption risk factor by aggregating consumption growth

over 24 quarters. Bandi and Tamoni (2023) find that a business cycle component of consumption

risk—capturing fluctuations between 4 and 8 years—achieves equivalent cross-sectional pricing

power as a consumption risk factor obtained by aggregating consumption growth over a 4-year
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Table 11
This table presents the prices of covariance risk (λ) for a six-factor model, which includes spectral bond
market factors from scale j = 1 to j = 6. The models are estimated using monthly excess returns (in
percentages) on 32 test portfolios, covering a period from 2008M9 to 2021M12. The t-statistics for correct
(t-statc) and potentially misspecified models (Kan et al., 2013; t-statm) are in parentheses. Furthermore,
p-values for the null hypothesis of R2 = 1 are in square brackets (Kan et al., 2013). The lambdas (except
λ0) are multiplied by 100.

λ̂0 λ̂(1) λ̂(2) λ̂(3) λ̂(4) λ̂(5) λ̂(6)

Panel A: OLS
Estimate 0.15 -25.70 -20.84 139.42 82.99 308.20 36.49
t-statc (2.35) (-1.14) (-0.76) (0.87) (0.84) (0.87) (0.18)
t-statm (1.92) (-1.01) (-0.48) (0.84) (0.77) (0.51) (0.09)
R2 0.842

[0.179]
Panel B: GLS
Estimate 0.07 -1.29 17.62 20.32 78.01 -38.76 50.26
t-statc (4.14) (-0.11) (0.79) (0.43) (1.79) (-0.33) (0.54)
t-statm (3.50) (-0.09) (0.67) (0.31) (1.81) (-0.28) (0.48)
R2 0.174

[0.009]

horizon. When we translate this finding of Bandi and Tamoni (2023) to the corporate bond

factor model of Elkamhi et al. (2024), the aggregation over 24 quarters might be too long for

the corporate bond market. Specifically, we find that the annual cycle component contains the

most cross-sectional pricing signal, and the aggregation-horizon of Elkamhi et al. (2024) would

obtain a risk factor that captures risk over a cycle longer than the business cycle (Bandi &

Tamoni, 2023). Future research should investigate more formally whether the aggregation ho-

rizon used by Elkamhi et al. (2024) contains the most pricing signal, using the extended Wold

decomposition as in this paper.
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C.3 Spectral bond market factor
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(a) Corporate bond market returns and cycle component at scale j = 4
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(b) Annual cycle component at scale j = 4

Figure 3: The upper panel shows the spectral bond market factor at scale j = 4 (blue/dashed) together
with the monthly market return in percentages (green). In the lower panel, we observe the spectral bond
market factor at scale j = 4 in more detail. Monthly data is used from September 2008 to December
2021.
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Figure 4: This figure plots the correlation for the spectral component of the bond market factor at scale
j with the bond market factor (MKTB) and liquidity risk factor (LRF), respectively. LRF is the liquidity
risk factor in the four-factor model of Bai et al. (2019, BBW). Furthermore, the spectral components of
MKTB are constructed following the discussion in Section 3, where J = 5. The sample period is from
September 2008 to December 2021.
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Table 12
Risk premia and cross-sectional (CSR) R2 for factor models in corporate bond pricing. The table presents the prices of multivariate beta risk (γ) estimated under:
(i) the CAPM with the corporate bond market factor (CAMPB); (ii) the 4-factor model of Bai et al. (2019) (BBW); (iii) the Fama and French (1993) two-factor
model (DEFTERM); (iv) the CAPM with the stock market factor (CAPM); (v) the single-factor intermediary capital model of He et al. (2017, HKMSF); (vi) the
original two-factor model proposed by He et al. (2017, HKM), which also includes the stock market factor (MKTS); (vii) the spectral bond market factor for scale

j = 4 (CAPMB(4)); (viii) the spectral factor model with all 6 frequency-specific components (6 freq.). The models are estimated using monthly excess returns
(in percentages) on 32 test portfolios, from 2008M9 to 2021M12. The t-statistics under the assumption of a correctly specified model (t-statc) and a misspecified
model (Kan et al., 2013, t-statm) are provided in parentheses. Moreover, the p-values for the null of R2 = 1 are provided in square brackets (Kan et al., 2013).

Panel A: Price of beta risk (OLS)

CAPMB BBW DEFTERM CAPM HKMSF

γ̂0 γ̂MKTB γ̂0 γ̂MKTB γ̂DRF γ̂CRF γ̂LRF γ̂0 γ̂DEF γ̂TERM γ̂0 γ̂MKTS γ̂0 γ̂CPTLT

Estimate 0.03 0.55 0.08 0.48 0.54 0.54 0.19 0.16 0.67 -0.28 0.28 1.21 0.37 1.93
t-statc (0.18) (2.16) (1.17) (2.54) (1.96) (1.56) (0.64) (2.82) (1.91) (-0.57) (2.10) (1.79) (2.83) (1.70)
t-statm (0.17) (2.11) (0.84) (2.34) (1.76) (1.54) (0.40) (2.68) (1.87) (-0.62) (2.09) (1.77) (2.83) (1.68)
R2 0.914 0.938 0.849 0.877 0.851

[0.708] [0.387] [0.310] [0.455] [0.325]

HKM CAPMB(4) 6 freq.

γ̂0 γ̂MKTS γ̂CPTLT γ̂0 γ̂(4) γ̂0 γ̂(1) γ̂(2) γ̂(3) γ̂(4) γ̂(5) γ̂(6)

Estimate 0.23 1.34 1.35 0.22 0.34 0.10 0.14 0.09 0.17 0.17 0.13 -0.21
t-statc (2.08) (2.00) (1.07) (1.37) (1.54) (0.94) (0.70) (0.46) (1.32) (0.78) (0.84) (-1.09)
t-statm (1.33) (1.97) (0.92) (1.35) (1.53) (0.90) (0.71) (0.42) (1.10) (0.63) (0.79) (-0.92)
R2 0.882 0.931 0.971

[0.367] [0.779] [0.646]

Panel B: Price of beta risk (GLS)

CAPMB BBW DEFTERM CAPM HKMSF

γ̂0 γ̂MKTB γ̂0 γ̂MKTB γ̂DRF γ̂CRF γ̂LRF γ̂0 γ̂DEF γ̂TERM γ̂0 γ̂MKTS γ̂0 γ̂CPTLT

Estimate 0.04 0.52 0.04 0.53 0.79 0.51 0.45 0.05 0.30 0.21 0.05 0.73 0.05 1.06
t-statc (2.11) (3.07) (1.71) (3.08) (3.02) (1.48) (3.23) (2.27) (1.50) (0.69) (2.45) (1.36) (2.64) (1.16)
t-statm (1.95) (3.05) (1.60) (3.05) (2.96) (1.48) (3.11) (2.12) (1.49) (0.70) (2.16) (1.27) (2.35) (1.11)
R2 0.114 0.163 0.054 0.031 0.026

[0.004] [0.003] [0.000] [0.000] [0.000]

HKM CAPMB(4) 6 freq.

γ̂0 γ̂MKTS γ̂CPTLT γ̂0 γ̂(4) γ̂0 γ̂(1) γ̂(2) γ̂(3) γ̂(4) γ̂(5) γ̂(6)

Estimate 0.05 0.73 0.98 0.05 0.28 0.04 0.02 0.18 0.02 0.21 0.10 -0.02
t-statc (2.43) (1.40) (1.06) (2.64) (2.52) (2.07) (0.22) (2.03) (0.17) (2.21) (1.23) (-0.19)
t-statm (1.99) (1.27) (1.01) (2.50) (2.25) (1.81) (0.20) (1.77) (0.13) (1.70) (0.84) (-0.14)
R2 0.031 0.123 0.177

[0.000] [0.004] [0.001]
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D Frequency-specific betas and delayed price adjustment

Bandi et al. (2021) show that scale-varying spectral betas imply delayed price adjustments, and

vice versa. In our context, a delayed price adjustment model is a model where the excess asset

return (yt) is related to lagged observations of the risk factor (xt). We follow the analysis of

Bandi et al. (2021) and provide a simple illustration that shows that delayed price adjustments

imply frequency-specific betas in Appendix D.1. We extend the discussion of Bandi et al. (2021)

by providing a detailed derivation, which they do not offer. Interestingly, this derivation reveals

a small mistake made by Bandi and Tamoni (2022). Similarly, in Appendix D.2 we show that

frequency-specific betas imply delayed price adjustments. We extend the simulation analysis

of Bandi et al. (2021) by introducing a novel simulated environment, illustrating that constant

spectral betas lead to the lack of delayed price adjustment in our simplified context.

D.1 Delayed price adjustments imply frequency-specific betas

In this appendix, we provide an illustration of the relationship between spectral betas and

delayed adjustment models. More specifically, we show that lagged price adjustments imply

frequency-specific betas (i.e., β(j) ̸= β for all j). Assume that x = {(yt, xt)⊺}t∈Z is a covariance-

stationary bivariate process. Moreover, we assume that yt (e.g., excess return on a portfolio) is

generated by a simple linear model, given by

yt = βxt + ut, (22)

where ut is an error term with zero mean and a variance of σ2
u. Furthermore, xt is an AR(1)

process, given by

xt = ρxt−1 + εt, |ρ| < 1, (23)

where εt is an error term with zero mean and a variance of σ2
ε . The covariance between the two

error terms is C(εt, ut) = σε,u. We impose |ρ| < 1 in order to generate a covariance-stationary

bivariate process x.

The context outlined above implies a delayed adjustment of y by x when σε,u ̸= 0. This can

be observed by rewriting ut as a function of εt as follows

ut =
σε,u
σ2
ε

εt + vt, (24)

where vt is an error term with zero mean, and uncorrelated with εt. This formulation holds

since ut and εt are correlated. Moreover, we reformulate the expression in Eq. (22), using the

AR(1) model for xt in Eq. (23), as follows

yt = β(ρxt−1 + εt) + ut = βρxt−1 + βεt + ut, (25)

Now, by substituting Eq. (24) in Eq. (25), we get
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yt = βxt +
σε,u
σ2
ε

εt + vt,

= βxt +
σε,u
σ2
ε

(xt − ρxt−1) + vt,

=

(
β +

σε,u
σ2
ε

)
xt −

σε,u
σ2
ε

ρxt−1 + vt. (26)

We observe in Eq. (26) that in our context, where σε,u ̸= 0, y is indeed a delayed adjustment

model where the lagged factor (xt−1) affects the excess return (yt). In this situation, the spectral

betas vary over the frequency components, {1, . . . , J}. Similarly, when σε,u = 0, the model in

Eq. (26) lacks delayed adjustment, and the spectral betas will be equal to the aggregate beta

(i.e., β(j) = β for all j). An illustrative example of the spectral betas, covariances and variances,

for different choices of σε,u and ρ, is provided in Appendix D.1.2. However, we derive first the

closed-form expressions of these statistical estimators in Appendix D.1.1.

D.1.1 Derivation: spectral variances, covariances and betas

In this appendix, we derive the closed-form expressions for the spectral variances, covariances,

and betas for the delayed adjustment model in Eqs. (22) and (23). A general closed-form

expression for the spectral betas is provided in Appendix A.2 of Bandi et al. (2021), which we

apply to our context. Furthermore, Bandi and Tamoni (2022, pp. 1201-1202) also provide the

closed-form expression for the spectral betas of our delayed adjustment model, although without

a derivation. Hence, we extend their analysis by offering a detailed derivation. Interestingly,

this reveals a small mistake made by Bandi and Tamoni (2022).

First, for convenience, we may write the bivariate process, x, as a VAR(1) model. Namely,

using the formulations for xt and yt in Eq. (23) and Eq. (22), respectively, we write

(
yt

xt

)
=

(
0 βρ

0 ρ

)(
yt−1

xt−1

)
+

(
βεt + ut

εt

)

=

(
0 βρ

0 ρ

)(
yt−1

xt−1

)
+

(
ε1t

ε2t

)

The Wold representation of this VAR(1) model is given by

(
yt

xt

)
=

∞∑
k=0

(
0 βρ

0 ρ

)k(
ε1t−k

ε2t−k

)

=

∞∑
k=1

(
0 βρk

0 ρk

)(
ε1t−k

ε2t−k

)
+

(
1 0

0 1

)(
ε1t

ε2t

)

=
∞∑
k=0

(
α1
k α2

k

α3
k α4

k

)(
ε1t−k

ε2t−k

)
(27)
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=
∞∑
k=0

αkεt−k

where we emphasise that α0 is, thus, a 2 × 2 identity matrix, I2. Moreover, we observe that

E[εt] = 0, such that the covariance matrix of the error terms can be formulated as

Σε = E [εtε
⊺
t ]

=

(
σ2
u + β2σ2

ε + 2βσε,u σε,u + βσ2
ε

• σ2
ε

)
(28)

This constant covariance matrix (over t), and the constant mean of the bivariate error term, εt,

are properties of the covariance stationary VAR(1) process.

The coefficient matrix defined in Eq. (27), and the covariance matrix in Eq. (28), are used

to derive the closed-form expression for the spectral betas, β(j). Furthermore, we use the closed-

form expression of a general spectral beta in Appendix A.2 of Bandi et al. (2021). Bandi and

Tamoni (2022, pp. 1201-1202) also provide an expression for the spectral betas. We will show

that this expression contains a small mistake. Following the notation in Bandi and Tamoni

(2022), define

aj =

2j−1∑
i=1

ρi−1

bj = aj(1− ρ2
j−1

)

cj =
2j−1−1∑
i=0

ρi

dj = ρ(cj − ρ2
j−1−1 − (ρ2

j−1−1)cj)

First, consider the variance of the spectral component x
(j)
t .

V
[
x
(j)
t

]
=

∞∑
k=0

σ2
ε1

2j−1−1∑
i=0

α3
k2j+i −

2j−1−1∑
i=0

α3
k2j+2j−1+i

2/
2j

+
∞∑
k=0

σ2
ε2

2j−1−1∑
i=0

α4
k2j+i −

2j−1−1∑
i=0

α4
k2j+2j−1+i

2/
2j

+

∞∑
k=0

2σε1,2

2j−1−1∑
i=0

α3
k2j+i −

2j−1−1∑
i=0

α3
k2j+2j−1+i

×

2j−1−1∑
i=0

α4
k2j+i −

2j−1−1∑
i=0

α4
k2j+2j−1+i

/2j

(29)

Using the coefficient matrix of the Wold decomposition in Eq. (27) and the covariance matrix
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in Eq. (28), we can rewrite this expression to

V
[
x
(j)
t

]
= 0 +

∞∑
k=0

σ2
ε

2j−1−1∑
i=0

ρk2
j+i −

2j−1−1∑
i=0

ρk2
j+2j−1+i

2/
2j + 0. (30)

The first term in Eq. (29) is zero because α3
k = 0 for all k, such that the term in brackets is

zero. The second term in Eq. (30) follows from the fact that σ2
ε2 = σ2

ε (see Eq. (28)), and

because α4
k = ρk for all k > 0 (see Eq. (27)). Besides that, we do not need to take into account

the special case of k being zero (α0 = I2), because ρ0 = 1 = α4
0. Moreover, the third term in

Eq. (29) is zero since, again, α3
k = 0 for all k. We can rewrite the variance of the jth spectral

component in Eq. (30) to

V
[
x
(j)
t

]
= σ2

ε

(
1− ρ2

j−1

)2(2j−1−1∑
i=0

ρi

)2 ∞∑
k=0

(
ρk2

j
)2/

2j

= σ2
εb

2
j

1

1− ρ2·2j

/
2j (31)

This shows also immediately one of the mistakes made in Bandi and Tamoni (2022, pp. 1201-

1202), where 1
1−ρ4·j

is written instead of 1

1−ρ2·2j
in Eq. (31).

In this second part of the derivation, we examine the covariance between the regressor (x
(j)
t )

and the regressand (y
(j)
t )

C
(
y
(j)
t , x

(j)
t

)
= E

[
y
(j)
t , x

(j)
t

]
=

∞∑
k=0

σ2
ε1

2j−1−1∑
i=0

α1
k2j+i −

2j−1−1∑
i=0

α1
k2j+2j−1+i

2j−1−1∑
i=0

α3
k2j+i −

2j−1−1∑
i=0

α3
k2j+2j−1+i

/2j

+
∞∑
k=0

σ2
ε2

2j−1−1∑
i=0

α2
k2j+i −

2j−1−1∑
i=0

α2
k2j+2j−1+i

2j−1−1∑
i=0

α4
k2j+i −

2j−1−1∑
i=0

α4
k2j+2j−1+i

/2j

+

∞∑
k=0

σε1,2

2j−1−1∑
i=0

α1
k2j+i −

2j−1−1∑
i=0

α1
k2j+2j−1+i

2j−1−1∑
i=0

α4
k2j+i −

2j−1−1∑
i=0

α4
k2j+2j−1+i

/2j

+

∞∑
k=0

σε1,2

2j−1−1∑
i=0

α2
k2j+i −

2j−1−1∑
i=0

α2
k2j+2j−1+i

2j−1−1∑
i=0

α3
k2j+i −

2j−1−1∑
i=0

α3
k2j+2j−1+i

/2j

Which can be rewritten to
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C
(
y
(j)
t , x

(j)
t

)
= 0

+

[
σ2
ε

2j−1−1∑
i=1

βρi −
2j−1−1∑
i=0

βρ2
j−1+i

2j−1−1∑
i=0

ρi −
2j−1−1∑
i=0

ρ2
j−1+i

+

∞∑
k=1

σ2
ε

2j−1−1∑
i=0

βρk2
j+i −

2j−1−1∑
i=0

βρk2
j+2j−1+i

×

2j−1−1∑
i=0

ρk2
j+i −

2j−1−1∑
i=0

ρk2
j+2j−1+i

]/2j

+ (σε,u + βσ2
ε)

2j−1−1∑
i=0

ρk2
j+i −

2j−1−1∑
i=0

ρk2
j+2j−1+i

/2j + 0

(32)

The first term in Eq. (32) is zero because α3
k = 0 for all k. For the second term in Eq. (32), we

used that σ2
ε2 = σ2

ε (see Eq. (28)), and we separated the case when k = 0 (α2
0 = 0 and α4

0 = 1)

and k ̸= 0 (α2
k = βρk and α4

k = ρk). However, since ρ0 = 1 = α4
0, we do not need to worry about

the restriction α0 = I2 for α4
k. This does not hold for α2

k, where βρ0 = β ̸= α2
0. Moreover, the

third term in Eq. (32) is derived from the fact that σε1,2 = σε,u + βσ2
ε (see Eq. (28)), α1

0 = 1,

and α1
k = 0 for all k > 0 (see Eq. (27)). Lastly, the final term in Eq. (32) is zero because, again,

α3
k = 0 for all k. We may reformulate Eq. (32) to

C
(
y
(j)
t , x

(j)
t

)
=

[
σ2
εβρ

2j−1−1∑
i=0

ρi − ρ2
j−1−1 − ρ2

j−1−1
2j−1−1∑
i=0

ρi

 bj

+ σ2
εβ

2j−1−1∑
i=0

ρi −
2j−1−1∑
i=0

ρ2
j−1+i

2
∞∑
k=1

(
ρk2

j
)2

+ (σε,u + βσ2
ε)bj

]/
2j

=

[
σ2
εβρ

(
cj − ρ2

j−1−1 − ρ2
j−1−1cj

)
bj + σ2

εβb
2
j

(
1

1− ρ2·2j
− 1

)
+
(
σε,u + βσ2

ε

)
bj

]/
2j

=

[
σ2
εβρdjbj + σ2

εβb
2
j

(
1

1− ρ2·2j
− 1

)
+
(
σε,u + βσ2

ε

)
bj

]/
2j (33)

In equation above, we observe that also the covariance between the spectral regressor and regress-

and is not correctly expressed in Bandi and Tamoni (2022, pp. 1201-1202). More specifically,

the use
(

1
1−ρ4·j

− 1
)
instead of

(
1

1−ρ2·2j
− 1
)
.

In the final part of our derivation, we combine the variance in Eq. (31) and the covariance

in Eq. (33) into a closed-form expression for the spectral betas. This expression is given by

β(j) =
C
(
y(j), x(j)

)
V
(
x(j)
) =

σ2
εβρdjbj + σ2

εβb
2
j

(
1

1−ρ2·2j
− 1
)
+
(
σε,u + βσ2

ε

)
bj

σ2
εb

2
j

1

1−ρ2·2j
(34)
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D.1.2 Illustration

In this appendix, we illustrate the delayed adjustment of excess asset returns (yt) to risk factors

(xt) leads to scale-varying spectral betas. But also that the lack of delayed adjustment leads to

constant spectral betas across scales. For this, we continue using the setting discussed above.

Specifically, yt is defined as in Eq. (22) and xt as in Eq. (23). Then, the delayed adjustment

model is presented in Eq. (26). We observe that if σε,u ̸= 0 (and ρ ̸= 0), then the excess

asset return is affected by a delayed component of the risk factor (xt−1). The spectral betas for

this delayed adjustment model in Eq. (26), also indicate that in this situation the spectral are

scale-varying. Moreover, Eq. (26) also shows that when there is no delayed adjustment (i.e.,

either σε,u = 0 or ρ = 0), then the spectral betas are constant across scales. We analyse whether

this indeed holds in a simulation example below.

Specifically, we assume that ρ = 0.5, σε = 1 and σu = 1. We consider different choices for

σε,u and discuss the pattern that emerges in the resulting spectral betas. Figure 5 presents the

spectral betas, spectral covariances, and spectral variances when σε,u = 0.3 > 0 (Panel (a)),

when σε,u = 0 (Panel (b)), and when σε,u = −0.3 < 0 (Panel (c)). The estimates are obtained

following the derivation in Appendix D.1.1.

First, when σε,u > 0, the delayed adjustment model in Eq. (26) indicates that the lagged

risk factor (xt−1) has a negative effect on the excess asset return (yt), since ρ is also positive.

Intuitively, we would expect that this leads to smaller estimates of systematic risk over longer

horizons. For instance, when a large negative shock occurs at time t, then yt will be negatively

affected at time t, but already converge back at time t+ 1. Similarly, a large positive shock in

the risk factor will positively affect yt at time t, but y, reverts back at time t + 1 due to the

negative dependence on the lagged risk factor. Panel (a) of Figure 5 shows that the spectral

betas decrease as the scale, j, increases. Therefore, since a higher scale is associated with a

lower frequency or longer horizon, this figure corresponds with our intuition.

Second, when σε,u = 0, then the delayed adjustment model in Eq. (26) shows that the excess

asset return is not affected by the lagged risk factor. Specifically, Eq. (26) can be rewritten to

yt = βxt+vt, which is just a traditional linear factor model. Therefore, we would hope that also

the spectral betas are constant across frequencies, such that the spectral betas and aggregate

beta on the traditional factor model coincide (see Theorem 3.1). In Panel (b) of Figure 5, we

observe the spectral betas and spectral (co)variances in this situation of no lagged dependence

on risk factors. Indeed, the spectral betas are constant across scales.

Third, when σε,u < 0 (and ρ > 0), the delayed adjustment model in Eq. (26) indicates that

the excess asset return (yt) is positively related to the lagged risk factor (xt−1). Opposite to the

intuition provided for Panel (a) of Figure 5, this implies that a positive shock to the risk factor

at time t− 1 had a positive effect on yt−1, and also a positive effect on y at time t. However, it

also holds that a negative shock at time t− 1 in x has a negative effect on y at time t− 1, and

also a negative effect at time t (through xt−1). Therefore, we expect systematic risk to increase

with longer horizons, and thus also the spectral betas. In Panel (c) of Figure 5 we observe the

spectral betas under σε,u = −0.3 < 0. Consistent with our intuition and Eq. (26), the estimates

of systematic risk increase with scale j.

Finally, we consider the situation in which ρ = 0 and σε,u = 0.3. Following the delayed
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(a) σε,u = 0.3 > 0
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Panel B: spectral covariances, variances and betas

(b) σε,u = 0
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(c) σε,u = −0.3 < 0
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(d) ρ = 0

Figure 5: This figure shows the spectral covariance, spectral variances, and spectral betas obtained for
different choices of σε,u (Eq. (26)). The models used for the excess asset return and risk factors are
introduced in Appendix D.1. Panels (a), (b) and (c) we set ρ = 0.5, σε = 1, and σu = 1. In Panel (d),
we set ρ = 0 and σε = 0.3.

adjustment model in Eq. (26), ρ = 0 should have the same effect as σε,u = 0, because the excess

asset returns are not related to lagged risk factors. Specifically, the delayed adjustment model

in Eq. (26) can be formulated as yt = (β +
σε,u

σ2
ε
)xt + vt. This implies that if we estimate the

traditional factor model in Eq. (22), we would obtain an inconsistent estimate of the overall

beta (β). We observe the spectral betas in Panel (d) of Figure 5, which are constant across

scales.

To conclude, we find that the dependence of the excess asset return on lagged risk factors (i.e.,

σε,u ̸= 0) implies frequency-specific spectral betas. Moreover, the lack of delayed adjustment

(i.e., σε,u = 0) leads to constant spectral betas over scales. However, the opposite pattern also

holds: frequency-specific spectral betas imply the delayed adjustment of asset returns by risk

factor, which we illustrate in the appendix below.
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D.2 Frequency-specific betas imply delayed price adjustments

In this appendix, we follow the analysis of Bandi et al. (2021), and show that scale-varying

spectral betas imply delayed price adjustments. First, we rewrite a spectral factor model with

frequency-specific betas to a delayed adjustment model. Then, with a simulation study, we show

that the correlation between the risk factors and the residuals of this delayed adjustment model

depends on the spectral betas.

Let yt and xt be the excess asset return and risk factor at time t. We assume that both series

are covariance stationary, and define a spectral factor model with J = 1 spectral components.

Following Eq. (4), we get

yt = βHFx
(1)
t + βLFx

(>1)
t + ut (35)

where x
(>1)
t = xt−x

(1)
t , and ut is an error term. Furthermore, βHF and βLF are the correspond-

ing high-frequency (HF) and low-frequency (LF) spectral betas. The objective is to express the

spectral factor model in Eq. (35) into a delayed adjustment model, where lagged risk factors

(xt−1) influence the excess asset return (yt).

Under the assumption that the bivariate process x = {(yt, xt)}t∈Z is covariance stationary,

we can use Eq. (13) to write this process in its Wold representation. This means that the risk

factor, xt, can be formulated as

xt =

∞∑
k=0

(
α3
k α4

k

)(ε1t−k

ε2t−k

)
=

∞∑
k=0

c⊺kεt−k, (36)

where ε = {(ε1t , ε2t )}t∈Z is a white noise process, and ck =
(
α3
k α4

k

)⊺
.

Now, using the Haar filter on the Wold residuals and coefficients, following Eq. (11) and Eq.

(12), to derive

x
(1)
t =

∞∑
k=0

(
c2k − c2k+1√

2

)⊺(εt−2k − εt−2k−1√
2

)
=

(
c0 − c1√

2

)⊺(εt − εt−1√
2

)
+

(
c2 − c3√

2

)⊺(εt−2 − εt−3√
2

)
+ · · · (37)

This means that the residual spectral component x
(>1)
t can be written as

x
(>1)
t = xt − x

(1)
t

=

(
c0 + c1√

2

)⊺(εt + εt−1√
2

)
+

(
c2 + c3√

2

)⊺(εt−2 + εt−3√
2

)
+ · · · , (38)

where we used the fact that xt = x
(1)
t + x

(>1)
t , as indicated by Eq. (13).

To observe that x
(>1)
t can indeed be expressed as Eq. (38), we use the expression of x

(1)
t in

Eq. (37), to write
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xt = x
(1)
t + x

(>1)
t (39)

=

(
c0 − c1√

2

)⊺(εt − εt−1√
2

)
+

(
c0 + c1√

2

)⊺(εt + εt−1√
2

)
+

(
c2 − c3√

2

)⊺(εt−2 − εt−3√
2

)
+

(
c2 + c3√

2

)⊺(εt−2 + εt−3√
2

)
+ · · · (40)

where

(
c2k − c2k+1√

2

)⊺(εt−2k − εt−2k−1√
2

)
+

(
c2k + c2k+1√

2

)⊺(εt−2k + εt−2k−1√
2

)
=

1

2

(
c⊺2k

(
εt−2k − εt−2k−1

)
− c⊺2k+1

(
εt−2k − εt−2k−1

))

+
1

2

(
c⊺2k

(
εt−2k + εt−2k−1

)
+ c⊺2k+1

(
εt−2k + εt−2k−1

))
= c⊺2kεt−2k + c⊺2k+1εt−2k−1.

By taking that the sum over this expression from 0 to infinity, we obtain the expression as in

Eq. (40). Obviously, the resulting expression of xt is equal to the formulation in Eq. (36). To

sum up, we have shown that the sum of expression of x
(>1)
t in Eq. (38) and x

(1)
t in Eq. (37)

results in the formulation of xt in Eq. (36). This means that we have verified the expression of

x
(>1)
t in Eq. (38).

Next, we continue our journey to write Eq. (35) as a delayed adjustment model. We follow

Bandi et al. (2021), and rewrite x
(>1)
t in Eq. (38) to

x
(>1)
t =

xoddt−1 + xevent

2
, (41)

where

xoddt−1 = (c0 + c1)
⊺εt−1 + (c2 + c3)

⊺εt−3 + · · · (42)

xevent = (c0 + c1)
⊺εt + (c2 + c3)

⊺εt−2 + · · · (43)

Then, we derive the delayed adjustment model from the spectral factor model in Eq. (35), where

we first use the fact that x
(>1)
t is xt − x

(1)
t , giving

yt = βHFx
(1)
t + βLFx

(>1)
t + ut,

= βHFx
(1)
t + βLF (xt − x

(1)
t ) + ut.

Next, we reformulate xt − x
(1)
t , and use the expression of x

(>1)
t , to get
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yt = βLFxt + (βHF − βLF )x
(1)
t + ut,

= βLFxt + (βHF − βLF )

(
xt −

xoddt−1 + xevent

2

)
+ ut.

Finally, we can further simplify the equation above, and end up with the delayed adjustment

model, given as

yt = βHFxt +

(
βHF − βLF

2

)
(xoddt−1 + xevent ) + ut, (44)

= βHFxt + ũt,

where ũt =
(
βHF−βLF

2

)
(xoddt−1 + xevent ) + ut.

We observe that Eq. (44) is a delayed adjustment model. Specifically, frequency-specific

betas (i.e., βHF ̸= βLF ) imply the adjustment of excess asset return (yt) by lagged risk factors

(xoddt−1). However, when the spectral betas are constant across scales (i.e., βHF = βLF ), Eq. (44)

implies the lack of delayed price adjustment.

D.2.1 Simulation

In Appendix D.1, we showed that a non-zero correlation between the risk factor (xt) and the

residual (ut) of the traditional factor model in Eq. (22) (i.e., σε,u ̸= 0), leads to frequency-

specific betas. Now, we demonstrate that the reverse relationship also holds. Specifically, in the

context outlined above, frequency-specific betas imply a correlation between the risk factor and

residual ũt in Eq. (44). Furthermore, we show that the sign of this correlation depends on the

difference between βHF and βLF , and is consistent with our discussion in Appendix D.1.

First, we provide a formal derivation of the sign of the covariance, and thus correlation,

between xt and ût. We emphasise that the (white noise) residual term ut of the spectral factor

model in Eq. (35) is uncorrelated with x
(1)
t and x

(>1)
t . Then, using the delayed adjustment

model in Eq. (44), we get

C(xt, ũt) = C
(
xt,

(
βLF − βHF

2

)
(xoddt−1 + xevent ) + ut

)
.

Then, substituting x
(>1)
t by the expression given in Eq. (41), we get

C(xt, ũt) = C
(
xt,
(
βLF − βHF

)
x
(>1)
t + ut

)
,

=
(
βLF − βHF

)
C
(
xt, x

(>1)
t

)
+ C (xt, ut) ,

=
(
βLF − βHF

)
C
(
xt, xt − x

(1)
t

)
+ C

(
x
(1)
t + x

(>1)
t , ut

)
,

where we use the linear property of covariances to derive the second line above. Furthermore,

we use the fact that xt = x
(1)
t +x

(>1)
t in the third expression. The last expression is rewritten to
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C(xt, ũt) =
(
βLF − βHF

) [
V(xt)− C

(
xt, x

(1)
t

)]
+ C

(
x
(1)
t , ut

)
+ C

(
x
(>1)
t , ut

)
,

=
(
βLF − βHF

) [
V(xt)− C

(
xt, x

(1)
t

)]
, (45)

where we again use the covariance as a linear operator in the first expression above. Furthermore,

in the second expression we use the exogeneity of ut with the spectral components, C(x(1)t , ut) = 0

and C(x(>1)
t , ut) = 0.

In this second step of the derivation, we find a closed-form expression for the variance

and covariance in Eq. (45). However, in order to derive these terms, we need to impose a

data generating process for the risk factor, xt. We assume that xt follows an AR(1) model:

xt = ρxt−1 + ε2t , where ρ < 1, such that xt is covariance stationary. Furthermore, ε2t is a white

noise process.

We start with the variance of the spectral factor.

V(xt) = V(ρxt−1 + ε2t ),

= ρ2V(xt−1) + V(ε2t ),

where we use the white noise property of ε2t , and take the autoregressive coefficient outside the

variance. Next, because xt is covariance stationary, its variance is constant over time, this means

that

(1− ρ2)V(xt) = V(ε2t ) = σ2
ε ,

=⇒ V(xt) =
σ2
ε

1− ρ2
. (46)

Now, we derive the covariance between the risk factor and its spectral component at scale

j = 1, C(xt, x
(1)
t ).

C
(
xt, x

(1)
t

)
= C

(
x
(1)
t + x

(>1)
t , x

(1)
t

)
,

= C
(
x
(1)
t , x

(1)
t

)
= V

(
x
(1)
t

)
,

where we used the orthogonality between the spectral components, x
(1)
t and x

(>1)
t . Using the

expression for x
(1)
t in Eq. (37), we rewrite the covariance above to

C
(
xt, x

(1)
t

)
= V

( ∞∑
k=0

(
c2k − c2k+1√

2

)⊺(εt−2k − εt−2k−1√
2

))
.

Since xt is an AR(1) process, a derivation similar as in Appendix D.1.1, tells us that c2k = ρ2k,

Note that ε2t is not the squared observation of a shock (ε) at time t. Instead, we use ε2t to make the connection
to the discussion in the previous section, see Eq. (36). We can show that ck =

(
0 ρk

)⊺
.
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and εt−k = ε2t−k (i.e., the residual in the AR(1) for xt). Therefore, we write the expression above

as

C
(
xt, x

(1)
t

)
= V

( ∞∑
k=0

(
ρ2k − ρ2k+1

√
2

)(
ε2t−2k − ε2t−2k−1√

2

))
,

=
1

4

∞∑
k=0

(
ρ2k − ρ2k+1

)2
V
(
ε2t−2k − ε2t−2k−1

)
,

=
1

4
(1− ρ)2

∞∑
k=0

(
ρ4k
) [

V
(
ε2t−2k

)
+ V

(
ε2t−2k−1

)]
,

=
σ2
ε(1− ρ)2

2(1− ρ4)
, (47)

where we use the white noise properties of ε, and the closed-form expression for a geometric

sum (note |ρ| < 1), in the last expressions above.

Finally, we use the variance of the risk factor in Eq. (46), and its covariance with the

spectral component at scale j = 1 in Eq. (47), to derive a closed-form expression for the

covariance between xt and ũt in Eq. (45).

C(xt, ũt) =
(
βLF − βHF

) [
V(xt)− C

(
xt, x

(1)
t

)]
,

=
(
βLF − βHF

) [ σ2
ε

1− ρ2
− σ2

ε(1− ρ)2

2(1− ρ4)

]
,

=
(
βLF − βHF

)(2σ2
ε(1− ρ4)− σ2

ε(1− ρ)2(1− ρ2)

2(1− ρ2)(1− ρ4)

)
,

=
(
βLF − βHF

)(σ2
ε(1− ρ2)

[
2(1 + ρ2)− (1− ρ)2

]
2(1− ρ2)(1− ρ4)

)
,

=
(
βLF − βHF

)(σ2
ε

[
1 + 2ρ+ ρ2

]
2(1− ρ4)

)
,

=
(
βLF − βHF

)(σ2
ε(1 + ρ)2

2(1− ρ4)

)
︸ ︷︷ ︸

>0

. (48)

In Eq. (48), we observe the final expression for C(xt, ũt). Since the variances in the de-

nominator of the correlation are positive, the correlation between the risk factor and aggregate

residual (ũt) depends on the sign of βLF − βHF . If the low-frequency beta is larger than the

high-frequency beta, then the correlation is positive. Similarly, when the high-frequency beta is

larger than the low-frequency beta, the correlation is negative.

In order to illustrate the dependence of the correlation on the spectral betas, we conduct a

simulation study, following Bandi et al. (2021). Specifically, we assume that the autoregressive

coefficient of the AR(1) model is ρ = 0.5, σ2
ε = 1, and σ2

u = 1. Then, we generate εt and ut from

a independently and identically distributed normal distribution with mean zero, and a sample

size of 10000 observations. These will be used in Eqs. (42) and (43) to get xoddt−1 and xevent ,
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(c) βHF = 0.8 = βLF

Figure 6: Plot of risk factor, xt, against the residual ũt in Eq. (44) for different choices of βHF and
βLF . We generate 10000 observations with ρ = 0.5, σ2

ε = 1, and σ2
u = 1. The seed is set to 123.

respectively. Finally, we plot the simulated AR(1) process, xt, against the shocks ũt (Eq. (44)),

in Figure 6.

Note that ũt depends on the high- and low-frequency specific betas. Therefore, we consider

two sets of values for the spectral betas. In Panel (a) of Figure 6 we use βHF = 1.6 and

βLF = 1.2, such that βHF > βLF . We observe that the correlation between xt and ũt is indeed

negative, which is consistent with Eq. (48). Moreover, in Panel (b) of Figure 6 we plot the risk

factors against the aggregated residuals with βHF = 0.4 and βLF = 0.8, such that βHF < βLF .

This panel shows that the correlation between xt and ũt is positive, consistent with Eq. (48).

Finally, we extend the analysis by Bandi et al. (2021) with a new simulated environment.

Specifically, we consider the situation in which βHF = 0.8 = βLF . Following the covariance

derived in Eq. (44), we expect that xt and ũt are uncorrelated. In other words, the delayed

adjustment model in Eq. (44) will correspond to a traditional factor model with β = βHF = βLF ,

and yt will not be influenced by the lagged risk factor xoddt−1. In Panel (c) of Figure 6, we observe

that the risk factor and aggregate residual are indeed uncorrelated.

Also this is an interesting finding since, in Appendix D.1, we proved that delayed price

adjustments (i.e., σε,u ̸= 0 in Eq. (26)) imply frequency-specific betas. Furthermore, the

frequency-specific betas were constant across scales when σε,u = 0 (i.e., no delayed price ad-

justment, see Panel (b) of Figure 5). We show in Panel (c) of Figure 6, that also the reverse

relationship holds in our context: when βHF = βLF , then C(xt, ũt) = 0.

Finally, this consistency between the discussion in Appendix D.1 and the discussion in this

appendix, also holds for the other two panels in Figure 6. First, Panel (a) shows that when

βHF > βLF , then the correlation between xt and ũt is negative. In Appendix D.2 we discussed

that βHF is larger than βLF when σε,u > 0, as can be seen in Panel (a) of Figure 5. You might

expect that this is inconsistent with Figure 6, however note that σε,u is not the correlation

between xt and a residual term including lagged effects of the risk factor. In Eq. (26), we

observe that ṽt = −σε,u

σ2
ε
ρxt−1 + vt is this error with lagged effects that corresponds with ũt in

this appendix. It can be shown that σε,u > 0 implies a negative correlation between xt and ṽt in

Eq. (26). This negative correlation between the risk factor and a residual (with lagged effects)

is also what we observe in Panel (a) of Figure 6, which corresponds with βHF > βLF . Moreover,

a similar connection with Appendix D.1 holds for Panel (b) of Figure 6.

55


	Introduction
	Literature review
	Methodology
	Spectral factor model: Intuition
	Extended Wold representation
	Identification

	Data
	Corporate bonds
	Construction of panel data
	Traded-factor models
	Test assets


	Results
	Empirical illustration: The properties of spectral betas
	Cross-sectional pricing: Corporate bonds

	Conclusion
	References
	Data
	BBW four-factor model

	Proof Theorem 3.1.
	Additional results: Corporate bonds
	Cross-sectional pricing: Nontraded-factor models
	Robustness analysis: Six spectral components
	Spectral bond market factor

	Frequency-specific betas and delayed price adjustment
	Delayed price adjustments imply frequency-specific betas
	Derivation: spectral variances, covariances and betas
	Illustration

	Frequency-specific betas imply delayed price adjustments
	Simulation



